Ir al contenido

Documat


Characterizing Quadratic Convection and Electromagnetically Induced Flow of Couple Stress Fluids in Microchannels

  • Lijun Zhang [1] ; M. M. Bhatti [1] ; Efstathios E. Michaelides [2] ; R. Ellahi [3]
    1. [1] Shandong University of Science and Technology; North-West University (Mafikeng Campus)
    2. [2] Department of Engineering, TCU
    3. [3] International Islamic University; King Fahd University of Petroleum and Minerals
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates the effects of quadratic convection on the electro-magnetohydrodynamically driven flow of couple stress fluid in a microchannel. The integration of quadratic convection effects and electro-magnetic hydrodynamics in microchannels offers high potential for advancing microfluidic technologies and opening new avenues of innovation. In microfluidic systems, the couple stress fluids describe more accurately the flow mechanisms. The current mathematical modeling offers more details on the impacts of viscous dissipation and joule heating. Analytical series solutions for the temperature and velocity profiles are used with a homotopy perturbation technique.

      The impacts of all the parameters are explored using tables and graphs. The dynamics of velocity and temperature distribution are analyzed in detail. Furthermore, the Nusselt number values are computed and shown using funnel charts. From the graphical results it is concluded that the simultaneous impact of quadratic convection and thermal Grashof number enhances the entire velocity profile over the whole channel.

      The velocity and temperature profile are also observed to increase with increasing Brinkman number. The thermal profile is considerably increased by the Hartmann number, the Grashof number, and the quadratic convection parameter. The thermal profile always has a peak near the center of the channel. The thermal profile is reduced by the couple stress fluid variable parameter. The present study can be of assistance to novel advancements in various fields such as lab-on-a-chip devices, chemical synthesis, and thermal management.

  • Referencias bibliográficas
    • 1. Laser, D.J., Santiago, J.G.: A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004). https://doi.org/10.1088/0960-1317/14/6/r01
    • 2. Karniadakis, G.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York, NY (2005)
    • 3. West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A., Berney, H.: Application of magneto...
    • 4. Noman, M., Wasim, A., Ali, M., Jahanzaib, M., Hussain, S., Ali, H.M.K., Ali, H.M.: An investigation of a solar cooker with parabolic trough...
    • 5. Bashir, M.A., Giovannelli, A., Ali, H.M.: Design of high-temperature solar receiver integrated with short-term thermal storage for dish-micro...
    • 6. Sajawal, M., Rehman, T.U., Ali, H.M., Sajjad, U., Raza, A., Bhatti, M.S.: Experimental thermal performance analysis of finned tube-phase...
    • 7. Ali, H.M.: Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems-a comprehensive...
    • 8. Bhatti, M.M., Öztop, H.F., Ellahi, R., Sarris, I.E., Doranehgard, M.H.: Insight into the investigation of diamond (C) and Silica (SiO2)...
    • 9. Goren, S.L.: On free convection in water at 4 °C. Chem. Eng. Sci. 21, 515–518 (1966). https://doi.org/ 10.1016/0009-2509(66)85065-0
    • 10. RamReddy, C., Naveen, P.: Analysis of activation energy in quadratic convective flow of a micropolar fluid with chemical reaction and...
    • 11. Al-Kouz, W., Mahanthesh, B., Alqarni, M.S., Thriveni, K.: A study of quadratic thermal radiation and quadratic convection on viscoelastic...
    • 12. Fatunmbi, E.O., Okoya, S.S.: Quadratic mixed convection stagnation-point flow in hydromagnetic Casson nanofluid over a nonlinear stretching...
    • 13. Mallawi, F.O., Ullah, M.Z.: Multiple slip impact on the Darcy–forchheimer hybrid nano fluid flow due to quadratic convection past an inclined...
    • 14. Balamurugan, R., Vanav Kumar, A.: Unsteady Casson fluid flow past a stretching sheet subject to non linear (quadratic) free convection...
    • 15. Ali, B., Ahammad, N.A., Awan, A.U., Guedri, K., Tag-ElDin, E.M., Majeed, S.: Dynamics of rotating micropolar fluid over a stretch surface:...
    • 16. Zhang, L., Tariq, N., Bhatti, M.M.: Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular...
    • 17. Al-Habahbeh, O.M., Al-Saqqa, M., Safi, M., Abo Khater, T.: Review of magneto hydrodynamic pump applications. Alex. Eng. J. 55, 1347–1358...
    • 18. Wang, Y.-N., Fu, L.-M.: Micropumps and biomedical applications—a review. Microelectron. Eng. 195, 121–138 (2018)
    • 19. Hosseini, H.R., Nikookar, H., Yesiloz, G., Naseh, M., Mohammadi, M.: An overview on micropumps, micromixers, and their applications in...
    • 20. Chakraborty, D., Chakraborty, S.: Microfluidic transport and micro-scale flow physics: an overview. In: Microfluidics and Microfabrication....
    • 21. Kundu, B., Saha, S.: Review and analysis of electro-magneto hydrodynamic flow and heat transport in micro channels. Energies 15, 7017...
    • 22. Bhatti, M.M., Michaelides, E.E.: Oldroyd 6-constant Electro-magneto-hydrodynamic fluid flow through parallel micro-plates with heat transfer...
    • 23. Venkatadri, K.: Hydromagneto quadratic natural convection on a lid driven square cavity with isothermal and non-isothermal bottom wall....
    • 24. Patil, P.M., Kulkarni, M.: A numerical study on MHD double diffusive nonlinear mixed convective nanofluid flow around a vertical wedge...
    • 25. Sabu, A.S., Mackolil, J., Mahanthesh, B., Mathew, A.: Nanoparticle aggregation kinematics on the quadratic convective magneto hydrodynamic...
    • 26. Gamachu, D., Ibrahim, W., Bijiga, L.K.: Nonlinear convection unsteady flow of electro-magneto hydrodynamic Sutter by hybrid nano fluid...
    • 27. Jiann, L.Y., Zin, N.A.M., Rawi, N.A., Ilias, M.R., Shafie, S.: Comparative study of quadratic mixed convection MHD Carreau fluid flow...
    • 28. Salmi, T.O., Mikkola, J.-P., Warna, J.P.: Chemical Reaction Engineering and Reactor Technology. CRC Press, Boca Raton, FL (2011)
    • 29. Si, D., Jian, Y.: Electro magneto hydrodynamic (EMHD) micro pump of Jeffrey fluids through two parallel micro channels with corrugated...
    • 30. Shashikumar, N.S., Sindhu, S., Madhu, M., Gireesha, B.J.: Second law analysis of MHD Carreau fluid flow through a microchannel with thermal...
    • 31. Bhatti, M.M., Bég, O.A., Ellahi, R., Abbas, T.: Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing...
    • 32. Rehman, A.U., Riaz, M.B., Atangana, A., Jarad, F., Awrejcewicz, J.: Thermal and concentration diffusion impacts on MHD Maxwell fluid:...
    • 33. Bhatti, M.M., Doranehgard, M.H., Ellahi, R.: Electro-magneto-hydrodynamic eyring-powell fluid flow through micro-parallel plates with...
    • 34. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9, 1709 (1966). https://doi.org/10.1063/1.1761925
    • 35. Ahmad, F., Nazeer, M., Ali, W., Saleem, A., Sarwar, H., Suleman, S., Abdelmalek, Z.: Analytical study on couple stress fluid in an inclined...
    • 36. Gorthi, S.R., Mondal, P.K., Biswas, G., Sahu, K.C.: Electro-capillary filling in a microchannel under the influence of magnetic and electric...
    • 37. Siva, T., Jangili, S., Kumbhakar, B., Mondal, P.K.: Unsteady electro magneto hydrodynamic flow of couple stress fluid through a microchannel:...
    • 38. Cowin, S.C.: The theory of polar fluids. In: Advances in Applied Mechanics. pp. 279–347. Elsevier (1974)
    • 39. Condiff, D.W., Dahler, J.S.: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842 (1964). https://doi.org/10.1063/1.1711295
    • 40. Eringen, A.C.: Theory of micropolar elasticity. In: Micro Continuum Field Theories. pp. 101–248. Springer New York, New York, NY (1999)
    • 41. Hajesfandiari, A., Dargush, G.F., Hadjesfandiari, A.R.: Size-dependent fluid dynamics with application to lid-driven cavity flow. J. Nonnewton....
    • 42. Hajesfandiari, A., Hadjesfandiari, A.R., Dargush, G.F.: Couple stress Rayleigh-Bénard convection in a square cavity. J. Nonnewton. Fluid...
    • 43. Nazeer, M., Hussain, F., Ahmad, F., Khan, M.I., Gohar, F., Malik, M.Y., Sun, T.-C., Saleem, A.: Numerical analysis of multiphase flow...
    • 44. Xiong, P.-Y., Nazeer, M., Hussain, F., Ijaz Khan, M., Saleem, A., Qayyum, S., Chu, Y.-M.: Two-phase flow of couple stress fluid thermally...
    • 45. Kumar Mondal, P., Wongwises, S.: Magneto-hydrodynamic (MHD) micropump of nanofluids in a rotating microchannel under electrical double-layer...
    • 46. Bhatti, M.M., Ishtiaq, F., Ellahi, R., Sait, S.M.: Novel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium...
    • 47. Sikdar, P., Datta, A., Biswas, N., Sanyal, D.: Identifying improved microchannel configuration with triangular cavities and different...
    • 48. Datta, A., Debbarma, D., Biswas, N., Sanyal, D., Das, A.K.: The role of flow structures on the thermal performance of microchannels with...
    • 49. Biswas, N., Datta, A., Manna, N.K., Mandal, D.K., Gorla, R.S.R.: Thermo-bioconvection of oxytactic microorganisms in porous media in the...
    • 50. Wang, L., Jian, Y., Liu, Q., Li, F., Chang, L.: Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel...
    • 51. Stathis Michaelides, E.: Nanofluidics: Thermodynamic and Transport Properties. Springer, New York, NY (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno