Ir al contenido

Documat


Natural Convection Non-Newtonian EMHD Dissipative Flow Through a Microchannel Containing a Non-Darcy Porous Medium: Homotopy Perturbation Method Study

  • Autores: M.M. Bhatti, O.Anwar Bég, R. Ellahi, T. Abbas
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Non-Newtonian thermal processing in microchannel systems, is emerging as a major area of interest in modern thermal engineering. Motivated by these developments, in the current paper, a mathematical model is developed for laminar, steady state fully developed viscoelastic natural convection electro-magnetohydrodynamic (EMHD) flow in a microchannel containing a porous medium. Transverse magnetic field and axial electrical field are considered. A modified Darcy–Brinkman–Forchheimer model is deployed for porous media effects. Viscous dissipation and Joule heating effects are included. The primitive conservation equations are rendered into dimensionless coupled ordinary differential equations with associated boundary conditions. The nonlinear ordinary differential boundary value problem is then solved using He’s powerful homotopy perturbation method (HPM). Validation with the MATLAB bvp4c numerical scheme is included for Nusselt number. Graphical plots are presented for velocity, temperature and Nusselt number for the influence of emerging parameters. Increment in thermal Grashof number and electric field parameter enhance velocity. Increasing Brinkman number and magnetic interaction number boost temperatures and a weak elevation is also observed in temperatures with increment in third-grade nonNewtonian parameter and Forchheimer number. Nusselt number is also elevated with thermal Grashof number, Forchheimer number, third-grade fluid parameter, Darcy parameter, Brinkman number and magnetic number.

  • Referencias bibliográficas
    • 1. Senapati, J.R., Dash, S.K., Roy, S.: Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder....
    • 2. Milani Shirvan, K., Ellahi, R., Mamourian, M., Moghiman, M.: Effects of wavy surface characteristics on natural convection heat transfer...
    • 3. Rahimi, A., Saee, A.D., Kasaeipoor, A., Malekshah, E.H.: A comprehensive review on natural convection flow and heat transfer: The most...
    • 4. Haghighi, S.S., Goshayeshi, H.R., Safaei, M.R.: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks....
    • 5. Mohebbi, R., Izadi, M., Sajjadi, H., Delouei, A.A., Sheremet, M.A.: Examining of nanofluid natural convection heat transfer in a -shaped...
    • 6. Roy, K., Giri, A., Das, B.: A computational study on natural convection heat transfer from an inclined plate finned channel. Appl. Therm....
    • 7. Bhowmick, D., Randive, P.R., Pati, S., Agrawal, H., Kumar, A., Kumar, P.: Natural convection heat transfer and entropy generation from...
    • 8. Ding, Y., Zhang, W., Deng, B., Gu, Y., Liao, Q., Long, Z., Zhu, X.: Experimental and numerical investigation on natural convection heat...
    • 9. Laser, D.J., Santiago, J.G.: A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004)
    • 10. Aluru, N., Beskok, A., Karniadakis, G., George, K.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York, NY (2005)
    • 11. Yi, M., Qian, S., Bau, H.H.: A magnetohydrodynamic chaotic stirrer. J. Fluid Mech. 468, 153–177 (2002)
    • 12. Goodarzi, M., Tlili, I., Tian, Z., Safaei, M.R.: Efficiency assessment of using graphene nanoplateletssilver/water nanofluids in microchannel...
    • 13. Pamme, N.: Magnetism and microfluidics. Lab Chip. 6, 24–38 (2006)
    • 14. Nguyen, N.-T.: Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid. Nanofluidics. 12, 1–16...
    • 15. Nourdanesh, N., Hossainpour, S., Adamiak, K.: Numerical simulation and optimization of natural convection heat transfer enhancement in...
    • 16. Umavathi, J.C., Bég, O.A.: Double-diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electric and...
    • 17. Balaji, R., Prakash, J., Tripathi, D., Bég, O.A.: Computation of magnetohydrodynamic electro-osmotic modulated rotating squeezing flow...
    • 18. Umavathi, J.C., Patil, S.L., Mahanthesh, B., Bég, O.A.: Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks...
    • 19. Bég, O.A., Bég, T.A., Munjam, S.R., Jangili, S.: Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized...
    • 20. Tripathi, D., Jayavel, P., Osman, A.B., Srivastava, V.: EMHD Casson hybrid nanofluid flow over an exponentially accelerated rotating porous...
    • 21. Bhatti, M.M., Zeeshan, A., Ijaz, N., Anwar Bég, O., Kadir, A.: Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic...
    • 22. Singh, H., Myong, R.S.: Critical review of fluid flow physics at micro- to nano-scale porous media applications in the energy sector....
    • 23. Konovalov, D.A., Ryazhskikh, V.I., Lazarenko, I.N., Kozhukhov, N.N.: Model of cooling of compact surfaces by microchannel recuperative...
    • 24. Lopes, A.O., Ruggiero, R.: Nonequilibrium in thermodynamic formalism: The second law, gases and information geometry. Qual. Theory Dyn....
    • 25. Bahmani, M.H., Sheikhzadeh, G., Zarringhalam, M., Akbari, O.A., Alrashed, A.A.A.A., Shabani, G.A.S., Goodarzi, M.: Investigation of turbulent...
    • 26. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier Science, London, England (1972)
    • 27. Roy, A.K., Bég, O.A., Saha, A.K., Murthy, J.V.R.: Taylor dispersion in non-Darcy porous media with bulk chemical reaction: a model for...
    • 28. Bèg, Ò.À., Takhar, H.S., Soundalgekar, V.M.: Thermoconvective flow in a saturated, isotropic, homogeneous porous medium using Brinkman’s...
    • 29. Aksoy, Y., Pakdemirli, M.: Approximate analytical solutions for flow of a third-grade fluid through a parallel-plate channel filled with...
    • 30. Kairi, R.R., Murthy, P.V.S.N.: Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian...
    • 31. Zhao, J., Zheng, L., Zhang, X., Liu, F., Chen, X.: Unsteady natural convection heat transfer past a vertical flat plate embedded in a...
    • 32. Ahmad, S., Farooq, M., Anjum, A., Javed, M., Malik, M.Y., Alshomrani, A.S.: Diffusive species in MHD squeezed fluid flow through non-Darcy...
    • 33. Dutta, S., Biswas, A.K., Pati, S.: Numerical analysis of natural convection heat transfer and entropy generation in a porous quadrantal...
    • 34. Ewis, K.M.: A New Approach in Differential transformation method with application on MHD flow in non-Darcy medium between porous parallel...
    • 35. Gopal, D., Saleem, S., Jagadha, S., Ahmad, F., Othman Almatroud, A., Kishan, N.: Numerical analysis of higher order chemical reaction...
    • 36. Saha, L.K., Bala, S.K., Roy, N.C.: Natural convection flow in a fluid-saturated non-Darcy porous medium within a complex wavy wall reactor....
    • 37. Ashraf, M., Ilyas, A., Ullah, Z., Ali, A.: Combined effects of viscous dissipation and magnetohydrodynamic on periodic heat transfer along...
    • 38. Abbas, A., Shafqat, R., Jeelani, M.B., Alharthi, N.H.: Significance of chemical reaction and Lorentz force on third-grade fluid flow and...
    • 39. Jang, J., Lee, S.S.: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens. Actuators A Phys. 80, 84–89 (2000)
    • 40. Hussein, A.K., Ghodbane, M., Said, Z., Ward, R.S.: The effect of the baffle length on the natural convection in an enclosure filled with...
    • 41. Al-Farhany, K., Al-dawody, M.F., Hamzah, D.A., Al-Kouz, W., Said, Z.: Numerical investigation of natural convection on Al2O3–water porous...
    • 42. Bhandari, D.S., Tripathi, D., Narla, V.K.: Magnetohydrodynamics-based pumping flow model with propagative rhythmic membrane contraction....
    • 43. Ellahi, R., Afzal, S.: Effects of variable viscosity in a third grade fluid with porous medium: an analytic solution. Commun. Nonlinear...
    • 44. Shenoy, A.V.: Non-Newtonian fluid heat transfer in porous media. In: Advances in Heat Transfer Vol. 24. pp. 101–190. Elsevier (1994).
    • 45. Akbar, N.S., Tripathi, D., Bég, O.A.: Modeling nanoparticle geometry effects on peristaltic pumping of medical magnetohydrodynamic nanofluids...
    • 46. Bhatti, M.M., Lu, D.Q.: Head-on collision between two hydroelastic solitary waves in Shallow Water. Qual. Theory Dyn. Syst. 17, 103–122...
    • 47. Ebaid, A.: Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric...
    • 48. Alizadeh-Pahlavan, A., Aliakbar, V., Vakili-Farahani, F., Sadeghy, K.: MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno