Ir al contenido

Documat


On the invariant rational curves of a certain family of polynomial differential equations

  • Homero Díaz-Marín [1] ; Osvaldo Osuna [1]
    1. [1] Universidad Michoacana
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 56, Nº. 1, 2022, págs. 93-111
  • Idioma: inglés
  • DOI: 10.15446/recolma.v56n1.105621
  • Títulos paralelos:
    • Sobre las curvas racionales invariantes de cierta familia de ecuaciones diferenciales
  • Enlaces
  • Resumen
    • español

      En este trabajo presentamos condiciones necesarias y suficientes para determinar si los ciclos límite de ciertas ecuaciones diferenciales en el plano son algebraicos o no. Particularmente, obtenemos criterios para que ciclos límite de ciertas ecuaciones derivadas de modelos depredador - presa con ciertos funcionales racionales de respuesta sean necesariamente óvalos trascendentes.

    • English

      In this work, we present sufficient conditions to determine if the limit cycles of certain differential systems in the plane are algebraic or not. In particular, we obtain criteria such that the limit cycles of equations derived from predatory prey models with rational functional response are necessarily transcendental ovals.

  • Referencias bibliográficas
    • J. Cano, An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms, Ann. Inst. Fourier (Grenoble) 43 (1993),...
    • M. V. Demina, Invariant algebraic curves for Liénard dynamical systems revisited, Applied Mathematics Letters 84 (2018), 42-48. DOI: https://doi.org/10.1016/j.aml.2018.04.013
    • M. V. Demina, Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems, Phys. Lett. A 382 (2018),...
    • H. Díaz-Marín and O. Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models, CUBO, A Mathematical Journal...
    • A. Ferragut and A. Gasull, Non-algebraic oscillations for predator-prey models, New Trends in Dynamical Systems. Salou, 2012, vol. EXTRA Publ....
    • I. Garcia, Transcendental limit cycles via the structure of arbitrary degree invariant algebraic curves of polynomial planar vector felds,...
    • I. A. García and J. Giné, Non-algebraic invariant curves for polynomial planar vector fields, Discrete and Continuous Dynamical Systems 10...
    • A. Gasull, H. Giacomini, and J. Torregrosa, Explicit non-algebraic limit cycles for polynomial systems, J. Comput. Appl. Math 20 (2007), 448-457....
    • J. Giné and M. Grau, Coexistence of algebraic and non-algebraic limit cycles explicitly given using Riccati equations, Nonlinearity 19 (2006),...
    • J. Giné and J. Llibre, Formal Weierstrass nonintegrability criterion for some classes of polynomial differential systems in C2, International...
    • J. Giné and J. Llibre, Strongly formal weierstrass non-integrability for polynomial differential systems in c2, Electronic Journal of Qualitative...
    • M. Hayashi, On polynomial Liénard systems which have invariant algebraic curves, Funkcial. Ekvac. 39 (1996), no. 3, 403-408.
    • E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1976.
    • E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
    • K. Odani, The limit cycle of the van der Pol equation is not algebraic, Journal of Differential Equations 115 (1995), no. 1, 146-152. DOI:...
    • O. Osuna, S. Rebollo-Perdomo, and G. Villasenor-Aguilar, On a class of invariant algebraic curves for Kukles systems, Electronic Journal of...
    • A. Rojas-Palma and E. González-Olivares, Gause type predator-prey models with a generalized rational non-monotonic functional response, Proceedings...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno