Ir al contenido

Documat


Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models

  • Autores: Homero G. Díaz Marín, Osvaldo Osuna
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 23, Nº. 3, 2021, págs. 343-355
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462021000300343
  • Enlaces
  • Resumen
    • español

      RESUMEN Probamos que para ciertas ecuaciones diferenciales polinomiales en el plano que aparecen a partir de modelos predador-presa de tipo III con respuesta funcional racional generalizada, toda solución algebraica debe ser una función racional. Como consecuencia, los ciclos límite, que son ´únicos para estos sistemas dinámicos, son necesariamente óvalos trascendentes. Ejemplificamos estos resultados mostrando una simulación numérica para un sistema que aparece en la dinámica de zooplancton-fitoplancton.

    • English

      ABSTRACT We prove that for certain polynomial differential equations in the plane arising from predator-prey type III models with generalized rational functional response, any algebraic solution should be a rational function. As a consequence, limit cycles, which are unique for these dynamical systems, are necessarily trascendental ovals. We exemplify these findings by showing a numerical simulation within a system arising from zooplankton-phytoplankton dynamics.

  • Referencias bibliográficas
    • Barrios-O’Neill, D.,Dick, J. T. A.,Emmerson, M. C.,Ricciardi, A.,MacIsaac, H. J.. (2015). Predator-free space, functional responses and biological...
    • Cano, J.. (1993). An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms. Ann. Inst. Fourier (Grenoble)....
    • Demina, M. V.. (2018). Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. Phys. Lett....
    • Demina, M. V.. (2018). Invariant algebraic curves for liénard dynamical systems revisited. Appl. Math. Lett.. 84. 42
    • Ferragut, A.,Gasull, A.. (2014). Non-algebraic oscillations for predator-prey models. Publ. Mat.. 58. 195-207
    • Giné, J.,Grau, M.. (2006). Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations. Nonlinearity....
    • Giné, J.,Llibre, J.. (2020). Strongly formal Weierstrass non-integrability for polynomial differential systems in C 2. Electron. J. Qual....
    • Giné, J.,Llibre, J.. (2020). Formal Weierstrass nonintegrability criterion for some classes of polynomial differential systems in C 2. Internat....
    • Hayashi, M.. (1996). On polynomial Li´enard systems which have invariant algebraic curves. Funkcial. Ekvac. 39. 403
    • Hille, E.. (1976). Ordinary Differential Equations in the Complex Domain. Dover Publications, Inc.. Mineola, NY.
    • Ince, E. L.. (1944). Ordinary Differential Equations. Dover Publications. New York.
    • Odani, K.. (1995). The limit cycle of the van der Pol equation is not algebraic. J. Differential Equations. 115. 146
    • Real, L. A.. (1977). The kinetics of functional response. The American Naturalist. 111. 289-300
    • Rosenbaum, B.,Rall, B. C.. (2018). Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods...
    • Ryabchenko, V. A.,Fasham, M. J. R.,Kagan, B. A.,Popova, E. E.. (1997). What causes short-term oscillations in ecosystem models of the ocean...
    • Sugie, J.. (2000). Uniqueness of limit cycles in a predator-prey system with Holling-type functional response. Quart. Appl. Math.. 58. 577
    • Sugie, J.,Kohno, R.,Miyazaki, R.. (1997). On a predator-prey system of Holling type. Proc. Amer. Math. Soc.. 125. 2041
    • Upadhyay, R. K.,Iyengar, S. R. K.. (2013). Introduction to Mathematical Modeling and Chaotic Dynamics. CRC Press.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno