Ir al contenido

Documat


Developing a Framework for Evaluating Student's Understanding at Figural Pattern Generalization

  • Asghary, Nasim [1] ; Afkhami, Robabeh [1] ; Medghalchi, Alireza [2]
    1. [1] Central Tehran Branch, Islamic Azad University, Iran
    2. [2] Kharazmi University, Iran
  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 18, Nº. 1, 2023, págs. 57-76
  • Idioma: inglés
  • DOI: 10.30827/pna.v18i1.16566
  • Títulos paralelos:
    • Desenvolvimento de uma estrutura para avaliar a compreensão dos alunos sobre a generalização de padrões figurativos
    • Desarrollo de un marco para evaluar la comprensión del estudiante en la generalización de patrones figurativos
  • Enlaces
  • Resumen
    • español

      Los patrones figurativos tienen una capacidad única para promover el pensamiento funcional. Este estudio tuvo como objetivo identificar las construcciones mentales de los estudiantes de 7º grado en Generalización de Patrones Figurativos (FPG) mediante el uso de la teoría de Acción, Proceso, Objeto y Esquema (APOS) para desarrollar un marco para evaluar la comprensión de la FPG. Una muestra de 220 estudiantes completó una prueba diseñada en el marco APOS y 19 estudiantes participaron en una entrevista semiestructurada. Los resultados mostraron que existen niveles de acción emergentes y parciales antes de la etapa de acción y niveles de proceso/objeto pre, emergentes y parciales antes de la etapa de proceso/objeto.

    • English

      Figural patterns have a unique capacity to promote functional thinking. This study aimed to identify the mental constructs of 7th-grade students in Figural Pattern Generalization (FPG) by using the Action, Process, Object, Schema (APOS) theory in order to develop a framework for evaluating students' understanding of FPG. A sample of 220 students completed a test designed based on the APOS framework and 19 students participated in a semi-structured interview. Results showed that there are emergent and partial action levels before the action stage and pre-emergent, and partial process/object levels before the process/object stage.

    • português

      Os padrões figurativos têm uma capacidade única de promover o pensamento funcional. Este estudo teve como objetivo identificar as construções mentais dos alunos do 7.º ano na Generalização de Padrões Figurativos (FPG), utilizando a teoria das Acçõ, Process, Object e Esquema (APOS) para desenvolver um quadro de avaliação da compreensão da FPG. Uma amostra de 220 alunos completou um teste concebido no âmbito da APOS e 19 alunos participaram numa entrevista semi-estruturada. Os resultados mostraram que existem níveis de ação emergentes e parciais antes da fase de ação e níveis de processo/objeto prévios, emergentes e parciais antes da fase de processo/objeto

  • Referencias bibliográficas
    • Arnon, I. (1998). In the Mind's Eye: How Children Develop Mathematical Concepts -Extending Piaget's Theory- the Case of Fractions...
    • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory: A framework for research...
    • Baker, B., Cooley, L., & Trigueros, M. (2000). The schema triad—a calculus example. Journal for Research in Mathematics Education, 31,...
    • Blanton, M. L. & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. ZDM-International Reviews...
    • Carraher, D. W. & Schliemann, A. D. (2019). Early algebraic thinking and the US mathematics standards for grades K to 5. Infancia y Aprendizaje,...
    • Chua, B. L. (2009). Features of generalising task: Help or hurdle to expressing generality? Australian Mathematics Teacher, 65(2), 18-24.
    • Chua, B. L. & Hoyles, C. (2012). The effect of different pattern formats on secondary two students’ ability to generalise. In T. Y. Tso,...
    • Chua, B. L. & Hoyles, C. (2014). Modalities of rules and generalizing strategies of year 8 students for a quadratic pattern. In C. Nicol,...
    • Copley, J. V. (2000). The young child and mathematics. National Association for the Education of Young Children.
    • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123)....
    • Dubinsky, E., Arnon, I., & Weller, K. (2013). Preservice Teachers’ Understanding of the Relation between a Fraction or Integer and its...
    • Gronow, M., Mulligan, J., & Cavanagh, M. (2022). Teachers’ understanding and use of mathematical structure. Mathematics Education Research...
    • Huntzinger, E. M. (2008). Exploring generalization through pictorial growth patterns. In C. E. Greenes & R. Rubenstein (Eds.), Algebra...
    • Jones, D. & Bush, W. S. (1996). Mathematical structures: Answering the “Why” questions. The Mathematics Teacher, 89, 716-722.
    • Kaput, J., Carraher, D. W., & Blanton, M. L. (Eds.) (2007). Algebra in the early grades. Lawrence Erlbaum Associates.
    • Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Algebraic generalization strategies: factors influencing student strategy selection....
    • Markworth, K. A. (2010). Growing and growing: Promoting functional thinking with geometric growing patterns [Doctoral dissertation, University...
    • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bdnarz, C. Kieran & L. Lee (Eds), Approaches to algebra: perspective...
    • Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structures for all. Mathematics Education Research Journal, 21(2),...
    • Mulligan, J., Prescott, A., & Mitchelmore, M. (2004). Children’s development of structure in early mathematics. In M. J. Hoines &...
    • Mulligan, J. & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research...
    • NCTM (2000). Principles and Standards for School Mathematics. The National Council of Teachers of Mathematics.
    • Oliveira, H., Polo-Blanco, I., & Henriques, A. (2021). Exploring prospective elementary mathematics teachers’ knowledge: A focus on functional...
    • Piaget, J. (1975). Piaget’s theory (Translated by G. Cellerier & J. Langer). In P. B. Neubauer (Ed.), The process of Child Development...
    • Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2009). The growth of mathematical patterning strategies in preschool children. In...
    • Papic, M., Mulligan, J., & Mitchelmore, M. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research...
    • Rivera, F. (2011). Toward a visually-oriented school mathematics curriculum: Research, theory, practice, and issues. Springer.
    • Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical considerations. Springer Science &...
    • Samson, D. A. (2007). An Analysis of the Influence of Question Design on Pupils’ Approaches to Number Pattern Generalisation Tasks. (Master...
    • Samson, D. A. (2011). The Heuristic Significance of Enacted Visualisation. [Unpublished doctoral dissertation]. Rhodes University, South Africa.
    • Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. J. Kaput, D. W. Carrher,...
    • Sutarto, Nusantara, T., Subanji, Hastuti, I. D., & Dafik (2018). Global conjecturing process in pattern generalization problem. Journal...
    • Sutarto, Nusantara, T., Subanji, & Sisworo (2016). Local conjecturing process in the solving of pattern generalization problem. Educational...
    • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its...
    • Wilkie, K. J., & Clarke, D. M. (2016). Developing students’ functional thinking in algebra through different visualisations of a growing...
    • Yuniati, S., Nusantara, T., Subanji, & Made Sulandra (2020). Stages in partial functional thinking in the form of liner functions: APOS...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno