Ir al contenido

Documat


Resumen de la tarea MentalRiskES en IberLEF 2023: Detección precoz del riesgo de trastornos mentales en español

  • Autores: Luis Alfonso Ureña López Árbol académico, Arturo Montejo Ráez Árbol académico, Alba María Mármol Romero, Adrián Moreno Muñoz, Flor Miriam Plaza del Arco Árbol académico, M. Dolores Molina González, María Teresa Martín Valdivia Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 71, 2023, págs. 329-350
  • Idioma: varios idiomas
  • Títulos paralelos:
    • Overview of MentalRiskES at IberLEF 2023: Early Detection of Mental Disorders Risk in Spanish
  • Enlaces
  • Resumen
    • Multiple

      Este artículo presenta la tarea MentalRiskES en IberLEF 2023, como parte de la 39ª edición de la Conferencia Internacional de la Sociedad Española para el Procesamiento del Lenguaje Natural. El objetivo de esta competición es promover la detección temprana de trastornos mentales en español. Proponemos tres tareas de detección precoz: Tarea 1 para trastornos alimentarios, Tarea 2 para la depresión y Tarea 3 para identificar un trastorno que no desvelamos a los participantes (ansiedad) para observar la transferencia de conocimiento entre los distintos trastornos. Solicitamos medir emisiones de carbono para un desarrollo de modelos sostenible. En esta primera edición, 37 equipos se registraron, 18 enviaron predicciones y 16 presentaron artículos. La mayoría experimentó con Transformers, incluyendo características, ampliando datos y técnicas de preprocesamiento

    • English

      This paper presents the MentalRiskEs shared task organized at IberLEF 2023, as part of the 39th International Conference of the Spanish Society for Natural Language Processing (SEPLN 2023). The aim of this task is to promote the early detection of mental risk disorders in Spanish. We outline three detection tasks: Task 1 on eating disorders, Task 2 on depression, and Task 3 on an undisclosed disorder during the competition (anxiety) to observe the transfer of knowledge among the different disorders proposed. Furthermore, we asked participants to submit measurements of carbon emissions for their systems, emphasizing the need for sustainable NLP practices. In this first edition, 37 teams registered, 18 submitted results, and 16 presented papers. Most teams experimented with Transformers, including features, data augmentation, and preprocessing techniques

  • Referencias bibliográficas
    • Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37–46.
    • Echeverrıa-Baru, F., F. Sanchez-Vega, and A. Pastor Lopez-Monroy. 2023. Early Detection of Mental Disorders in Spanish Telegram Messages using...
    • Fabregat, H., A. Duque, L. Araujo, and J. Martinez-Romo. 2023. NLP-UNED at MentalRiskES 2023: Approximate Nearest Neighbors for Identifying...
    • Fandiño, A. G., J. A. Estape, M. Pamies, J. L. Palao, J. S. Ocampo, C. P. Carrino, C. A. Oller, C. R. Penagos, A. G. Agirre, and M. Villegas....
    • Fernandez-Hernandez, A., R. Moreno- Sanchez, J. Viosca-Ros, R. Enrique- Guillen, N. P. Cruz-Dıaz, and S. M. Jimenez-Zafra. 2023. TextualTherapists at...
    • Garcıa Santiago, M.-d.-J., F. Sanchez-Vega, and A. P. Lopez-Monroy. 2023. Improving Transformer by Instance Packaging for Mental Illnesses...
    • Gonzalez-Silot, S., E. Martınez-Camara, and L. A. Ureña-Lopez. 2023. SINAI at MentalRisk: Using Emotions for Detecting Depression. In IberLEF...
    • Guerra, R., B. Pizarro, C. Aracena, C. Muñoz-Castro, A. Carvallo, M. Rojas, and J. Dunstan. 2023. CMM PLN at MentalRiskES: A Traditional Machine Learning...
    • He, P., X. Liu, J. Gao, and W. Chen. 2021. Deberta: Decoding-enhanced bert with disentangled attention. In International Conference on Learning...
    • Hu, C. and X. Zhou. 2023. Mental Disorders Detection with Immediate Message using RoBERTa. In IberLEF (Working Notes). CEUR Workshop Proceedings.
    • Jimenez-Zafra, S. M., F. Rangel, and M. Montes-y Gomez. 2023. Overview of IberLEF 2023: Natural Language Processing Challenges for Spanish...
    • Larrayoz, X., N. Lebeña, A. Casillas, and P. Alicia. 2023. Eating disorders detection by means of deep learning. In Iber- LEF (Working Notes)....
    • Losada, D. and F. Crestani. 2016. A test collection for research on depression and language use. volume 9822, pages 28–39, 09.
    • Martinez, E., J. Cuadrado, D. Peña, J. C. Martinez-Santos, and E. Puertas. 2023. Automated Depression Detection in Text Data: Leveraging Lexical...
    • Marmol-Romero, A. M., A. Moreno-Muñoz, F. M. Plaza-del-Arco, M. D. Molina- Gonzalez, M. T. Martın-Valdivia, L. A. Ureña-Lopez, and A. Montejo-Raez....
    • Nakayama, H., T. Kubo, J. Kamura, Y. Taniguchi, and X. Liang. 2018. doccano: Text annotation tool for human. Software available from https://github.com/doccano/doccano.
    • Pan, R., J. A. Garcıa-Dıaz, and R. Valencia- Garcıa. 2023. UMUTeam at Mental- RiskES2023@IberLEF: Transformer and Ensemble Learning Models...
    • Parapar, J., P. Martın-Rodilla, D. E. Losada, and F. Crestani. 2021. Overview of erisk at clef 2021: Early risk prediction on the internet...
    • Perez, J. M., J. C. Giudici, and F. Luque. 2021. pysentimiento: A python toolkit for sentiment analysis and socialnlp tasks.
    • Rujas, M., B. Merino-Barbancho, P. Arroyo, and G. Fico. 2023. Development of a Natural Language Processing-Based System for Characterizing...
    • Sadeque, F., D. Xu, and S. Bethard. 2018. Measuring the latency of depression detection in social media. In Proceedings of the Eleventh ACM...
    • Sanchez-Viloria, S., D. Peix-del Rıo, R. Bermudez-Cabo, G. A. Arrojo- Fuentes, and I. Segura-Bedmar. 2023. A Framework for Identifying Depression...
    • Thompson, H. and M. Errecalde. 2023. Early Detection of Depression and Eating Disorders in Spanish: UNSL at MentalRiskES 2023. In IberLEF...
    • Turon, P., D. Cabestany, N. Perez, and M. Cuadros. 2023. Text Classification For Early Detection of Eating Disorders and Depression in Spanish....
    • Vazquez Ramos, L., C. Moreno Garcıa, J. Mata Vazquez, and V. Pachon Alvarez. 2023. I2C-UHU at MentalRiskES 2023: Detecting and Identifying...
    • World Health Organization. 2022. Mental disorders. https://www.who.int/newsroom/ fact-sheets/detail/mentaldisorders, June. Accessed: 2023-02-10.
    • Zubiaga, I. and R. Justo. 2023. SPIN at MentalRiskES 2023: Transformer-Based Model for Real-Life Depression Detection in Messaging Apps. In...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno