Ir al contenido

Documat


ResNet18 supported inspection of tuberculosis in chest radiographs with integrated deep, lbp, and DWT features

  • Venkatesan Rajinikanth [2] ; Seifedine Kadry [3] ; Pablo Moreno Ger [1]
    1. [1] Universidad Internacional de La Rioja

      Universidad Internacional de La Rioja

      Logroño, España

    2. [2] Saveetha School of Engineering
    3. [3] Noroff University College
  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 8, Nº. 2, 2023, págs. 38-46
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.05.004
  • Enlaces
  • Resumen
    • The lung is a vital organ in human physiology and disease in lung causes various health issues. The acute disease in lung is a medical emergency and hence several methods are developed and implemented to detect the lung abnormality. Tuberculosis (TB) is one of the common lung disease and premature diagnosis and treatment is necessary to cure the disease with appropriate medication. Clinical level assessment of TB is commonly performed with chest radiographs (X-ray) and the recorded images are then examined to identify TB and its harshness. This research proposes a TB detection framework using integrated optimal deep and handcrafted features. The different stages of this work include (i) X-ray collection and processing, (ii) Pretrained Deep-Learning (PDL) scheme-based feature mining, (iii) Feature extraction with Local Binary Pattern (LBP) and Discrete Wavelet Transform (DWT), (iv) Feature optimization with Firefly-Algorithm, (v) Feature ranking and serial concatenation, and (vi) Classification by means of a 5-fold cross confirmation. The result of this study validates that, the ResNet18 scheme helps to achieve a better accuracy with SoftMax (95.2%) classifier and Decision Tree Classifier (99%) with deep and concatenated features, respectively. Further, overall performance of Decision Tree is better compared to other classifiers.

  • Referencias bibliográficas
    • S. Arunmozhi, , A. P. Kamath, V. Rajinikanth, . Detection of Tuberculosis in Chest X-Ray using Cancatinated Deep and Handcrafted Features....
    • L. Ma, Y.Wang, L.Guo, Y.Zhang, P.Wang, X.Pei, et al.Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice...
    • M. Nijiati, Z. Zhang, A. Abulizi, H.Miao, A.Tuluhong, S.Quan, et al. Deep learning assistance for tuberculosis diagnosis with chest radiography...
    • X. Wang, Z. Zhang, D. Chen, N. Peng, P. U. Thakker, M. Z. Schwartz, Y. Zhang, Challenges in the diagnosis of testicular infarction in the...
    • K. Zaman, Tuberculosis: a global health problem. Journal of health, population, and nutrition, 28(2), 111, 2010.
    • WHO (https://www.who.int/news-room/fact-sheets/detail/tuberculosis)
    • E. Priya, Optimization-Based Tuberculosis Image Segmentation by Ant Colony Heuristic Method. International Journal of Swarm Intelligence...
    • E. Priya, S. Srinivasan, Automated decision support system for tuberculosis digital images using evolutionary learning machines. European...
    • S. Arunmozhi, V. Rajinikanth, M. P. Rajakumar, . Deep-Learning based Automated Detection of Pneumonia in Chest Radiographs. In 2021 International...
    • A. Aziz, M. Attique, U.Tariq, U., Y. Nam, M. Nazir, C. W. Jeong et al., . An Ensemble of Optimal Deep Learning Features for brain tumor classification....
    • A. Bhandary, G. A. Prabhu, V. Rajinikanth, VK. P. Thanaraj, , S. C. Satapathy, ., D. E. Robbins, Deep-learning framework to detect lung abnormality–A...
    • X. Chen, X. Wang, K. Zhang, K., R. Zhang, K. M. Fung, T. C. Thai, et al.. Recent advances and clinical applications of deep learning in medical...
    • V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, et al.A noveltransfer learning based approach for pneumonia detection...
    • N. Dey, Y. D. Zhang, Y. D., V. Rajinikanth, R. Pugalenthi, N. S. M. Raja. Customized VGG19 architecture for pneumonia detection in chest...
    • U. Raghavendra, A., Gudigar, T. N. Rao,V. Rajinikanth, E. J. Ciaccio, , C. H. Yeong, et al. Feature‐versus deep learning‐based approaches...
    • V. Rajinikanth, S. M. Aslam, S. Kadry, Deep Learning Framework to Detect Ischemic Stroke Lesion in Brain MRI Slices of Flair/DW/T1 Modalities....
    • V. Rajinikanth, S. Kadry, Y. Nam, Convolutional-Neural-Network Assisted Segmentation and SVM Classification of Brain Tumor in Clinical MRI...
    • M. Ramzan, M. Raza, M. Sharif, M. A. Khan, Y. Nam, Y. . Gastrointestinal Tract Infections Classification Using Deep Learning. Cmc-Computers...
    • T. Rahman, A. Khandakar, M. A. Kadir, K. R. Islam, K. F. Islam, R. Mazhar, et al. Reliable tuberculosis detection using chest X-ray with...
    • M. P. Rajakumar, R. Sonia, B. U. Maheswari, S. P. Karuppiah, Tuberculosis detection in chest X-ray using Mayfly-algorithm optimized dual-deeplearning...
    • M. Odusami, R. Maskeliunas, R. Damaševičius, S. Misra, Comparable Study of Pre-trained Model on Alzheimer Disease Classification. In International...
    • A. Afzali, F. B. Mofrad, ., M. Pouladian, . Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description....
    • S. Jaeger, S. Candemir, S. Antani, Y.X.J. Wáng, P.X. Lu, P., & Thoma, Two public chest X-ray datasets for computer-aided screening of...
    • M. H. A. Hijazi, S. K. T. Hwa, A. Bade, R. Yaakob, M. S. Jeffree, Ensemble deep learning for tuberculosis detection using chest X-Ray and...
    • R. Hooda, S.Sofat, S.Kaur, A.Mittal, F. Meriaudeau, F, Deep-learning: A potential method for tuberculosis detection using chest radiography,...
    • TB Data. DOI:10.21227/mps8-kb56.
    • A. Rohilla, R. Hooda, A. Mittal,TB detection in chest radiograph using deep learning architecture, ICETETSM-17, 136-147, 2017.
    • S. Kadry, G. Srivastava, V. Rajinikanth, S. Rho, Y. Kim, Tuberculosis detection in chest radiographs using spotted hyena algorithm optimized...
    • R. Mohan, S., Kadry, V. Rajinikanth, A. Majumdar, O. Thinnukool, Automatic Detection of Tuberculosis Using VGG19 with Seagull- International...
    • S. Kadry, V.Rajinikanth, R.González Crespo, E. Verdú, Automated detection of age-related macular degeneration using a pre-trained deeplearning...
    • M. A. Khan, A.Majid, N.Hussain, M. Alhaisoni, Y. D.Zhang, S.Kadry, Y.Nam,Multiclass Stomach Diseases Classification Using Deep Learning Features...
    • M. A. Khan, V.Rajinikanth, S. C.Satapathy, D.Taniar, J. R. Mohanty, U.Tariq, R.Damaševičius, VGG19 Network Assisted Joint Segmentation and...
    • M. A. Khan, M. Sharif, T.Akram, R.Damaševičius, R.Maskeliūnas, Skin lesion segmentation and multiclass classification using deep learning...
    • S. Kaliyugarasan, A. Lundervold, A. S. Lundervold, Pulmonary nodule classification in lung cancer from 3D thoracic CT scans using fastai...
    • V. Srivastava, S. Gupta, G.Chaudhary, G., A. Balodi, M. Khari, V. GarcíaDíaz, An enhanced texture-based feature extraction approach for classification...
    • A. A. Rezaie, A. Habiboghli, Detection of lung nodules on medical images by the use of fractal segmentation. International Journal of Interactive...
    • V. C. Osamor, A. A. Azeta, O. O. Ajulo, Tuberculosis–Diagnostic Expert System: An architecture for translating patients information from...
    • M. A. Khemchandani, S. M. Jadhav, B. R. Iyer, Brain tumor segmentation and identification using particle imperialist deep convolutional neural...
    • G. R. Vásquez-Morales, S. M. Martinez-Monterrubio, P. Moreno-Ger, J. A. Recio-Garcia, Explainable prediction of chronic renal disease in...
    • A. Gudigar, U. Raghavendra, T. Devasia, K. Nayak, S. M. Danish, G. Kamath, et al. Global weighted LBP based entropy features for the assessment...
    • S. Mirniaharikandehei, M. Heidari, G.Danala, S. Lakshmivarahan, B.A novel feature reduction method to improve performance of machine learning...
    • N. Sri Madhava Raja, V. Rajinikanth, K. Latha, K. (2014). Otsu based optimal multilevel image thresholding using firefly algorithm. Modelling...
    • M. I. Waly, M. Y. Sikkandar, M. A. Aboamer, S. Kadry, O. Thinnukool, Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno