Ir al contenido

Documat


New Analytic Solutions for Fluid Flow Equations in Higher Dimensions Around an Offshore Structure Describing Bidirectional Wave Surfaces

  • Shailendra Singh [1] ; Santanu Saha Ray [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Offshore structures are utilized in several fields, including marine engineering, the oil and gas industries, energy harvesting systems, transportation, aquaculture, and more. The exact solution of nonlinear evolution equations shows the various physical behavior of these equations. In this order, this article aims to examine the (2 + 1) and (3+1)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equations for the fluid flows around an offshore structure. The Paul–Painlevé approach method has been adopted for the first time to solve these nonlinear evolution equations analytically. By employing this method, abundant multiple exact solutions have been derived.

      All the obtained solutions are verified by using the software MATHEMATICA. All the results have been expressed by the 3D graphs. These graphs depict the solitary wave solutions in the form of singular, bright, dark and singular periodic-soliton solutions. By carefully selecting the parameters used in numerical simulation and physical explanations, we can demonstrate the importance of the findings. The obtained results depict the bidirectional wave surfaces around an offshore structure in fluid dynamics.

      It is suggested that the provided approach can be used to facilitate nonlinear dynamical models that can be used in a wide range of physical applications. We believe that many professionals in the field of nonlinear physics and engineering models will gain knowledge from this study.

  • Referencias bibliográficas
    • 1. Singh, S., Saha Ray, S.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions for modified KdV equation with variable...
    • 2. Zahran, E.H., Bekir, A.: Enormous soliton solutions to a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Chin. J. Phys....
    • 3. Singh, S., Saha Ray, S.: New abundant analytic solutions for generalized KdV6 equation with timedependent variable coefficients using Painlevé...
    • 4. Zahran, E.H., Guner, O., Bekir, A.: Comparison between three distinct perceptions to the new solitary solutions of the generalized Hirota–Satsuma...
    • 5. Younas, U., Ren, J.: Construction of optical pulses and other solutions to optical fibers in absence of self-phase modulation. Int. J....
    • 6. Younas, U., Ren, J., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math....
    • 7. Younas, U., Sulaiman, T.A., Ren, J.: On the study of optical soliton solutions to the three-component coupled nonlinear Schrödinger equation:...
    • 8. Younas, U., Sulaiman, T.A., Ren, J.: Dynamics of optical pulses in fiber optics with stimulated Raman scattering effect. Int. J. Mod. Phys....
    • 9. Younas, U., Ren, J.: On the study of optical soliton molecules of Manakov model and stability analysis. Int. J. Mod. Phys. B 36(26), 2250180...
    • 10. Al-Mamun, A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the...
    • 11. Al-Mamun, A., Ananna, S.N., An, T., Shahen, N.H.M., Asaduzzaman, M.: Dynamical behaviour of travelling wave solutions to the conformable...
    • 12. Al-Mamun, A., Ananna, S.N., An, T., Asaduzzaman, M., Rana, M.S.: Sine-Gordon expansion method to construct the solitary wave solutions...
    • 13. Al-Mamun, A., Ananna, S.N., An, T., Asaduzzaman, M., Hasan, A.: Optical soliton analysis to a family of 3D WBBM equations with conformable...
    • 14. Al-Mamun, A., Ananna, S.N., An, T., Shahen, N.H.M.: Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations...
    • 15. Al-Mamun, A., Shahen, N.H.M., Ananna, S.N., Asaduzzaman,M.: Solitary and periodic wave solutions to the family of new 3D fractional WBBM...
    • 16. Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4...
    • 17. Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified...
    • 18. Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean....
    • 19. Arefin, M.A., Khatun, M.A., Uddin, M.H., ˙Inç, M.: Investigation of adequate closed form travelling wave solution to the space-time fractional...
    • 20. Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of soliton solutions to the couple type fractional-order nonlinear...
    • 21. Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and...
    • 22. Xu, K.D., Guo, Y.J., Liu, Y., Deng, X., Chen, Q., Ma, Z.: 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE...
    • 23. Feng, Y., Zhang, B., Liu, Y., Niu, Z., Fan, Y., Chen, X.: A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode...
    • 24. Yuan, Q., Kato, B., Fan, K., Wang, Y.: Phased array guided wave propagation in curved plates. Mech. Syst. Signal Process. 185, 109821...
    • 25. Yuan, H., Yang, B.: System dynamics approach for evaluating the interconnection performance of cross-border transport infrastructure....
    • 26. Chen, G., Chen, P., Huang, W., Zhai, J.: Continuance intention mechanism of middle school student users on online learning platform based...
    • 27. Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y.: A practical and economical ultra-wideband base station placement approach for indoor autonomous...
    • 28. Feng, Q., Feng, Z., Su, X.: Design and simulation of human resource allocation model based on double-cycle neural network. Comput. Intell....
    • 29. Della Volpe, C., Siboni, S.: From van der Waals equation to acid-base theory of surfaces: a chemicalmathematical journey. Rev. Adhes....
    • 30. Xie, X., Wang, T., Zhang, W.: Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction. Appl. Math. Lett....
    • 31. Zhang, J., Xie, J., Shi, W., Huo, Y., Ren, Z., He, D.: Resonance and bifurcation of fractional quintic Mathieu–Duffing system. Chaos:...
    • 32. Malik, S., Almusawa, H., Kumar, S., Wazwaz, A.M., Osman, M.S.: A (2+1)-dimensional Kadomtsev– Petviashvili equation with competing...
    • 33. Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., Arqub, O.A.: The Tikhonov regularization method for the inverse source...
    • 34. Kumar, S., Niwas, M., Osman, M.S., Abdou, M.A.: Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas...
    • 35. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional...
    • 36. Tariq, K.U., Rezazadeh, H., Zubair, M., Osman, M.S., Akinyemi, L.: New exact and solitary wave solutions of nonlinear Schamel–KdV equation....
    • 37. Mia, R., Miah, M.M., Osman, M.S.: A new implementation of a novel analytical method for finding the analytical solutions of the (2 +...
    • 38. Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W., Al Sharif, M.A., Osman, M.S.: Dynamical behavior...
    • 39. Saha Ray, S., Singh, S.: New various multisoliton kink-type solutions of the (1 + 1)-dimensional Mikhailov–Novikov–Wang equation....
    • 40. Xiao, Y., Fan, E., Liu, P.: Inverse scattering transform for the coupled modified Korteweg–de Vries equation with nonzero boundary conditions....
    • 41. Saha Ray, S.: Painlevé analysis, group invariant analysis, similarity reduction, exact solutions, and conservation laws of Mikhailov–Novikov–Wang...
    • 42. Singh, S., Saha Ray, S.: Painlevé analysis, auto-Bäcklund transformation and new exact solutions of (2+1) and (3+1)-dimensional...
    • 43. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of a Sharma–Tasso–Olver–Burgers...
    • 44. Singh, S., Saha Ray, S.: Painlevé integrability, auto-Bäcklund transformations, new abundant analytic solutions including multi-soliton...
    • 45. Rabie, W.B., Ahmed, H.M.: Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov’s law by improved...
    • 46. Albares, P., Esévez, P.G., Lejarreta, J.D.: Derivative non-linear Schrödinger equation: singular manifold method and lie symmetries. Appl....
    • 47. Ravi, L.K., Saha Ray, S., Sahoo, S.: New exact solutions of coupled Boussinesq–Burgers equations by exp-function method. J. Ocean Eng....
    • 48. Zafar, A., Rezazadeh, H., Reazzaq,W., Bekir, A.: The simplest equation approach for solving non-linear Tzitzeica type equations in non-linear...
    • 49. Sahoo, S., Saha Ray, S., Abdou, M.A.: New exact solutions for time-fractional Kaup–Kupershmidt equation using improved (G /G)-expansion...
    • 50. Painlevé, P.: Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math....
    • 51. Kudryashov, N.A.: The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations. Optik 183,...
    • 52. Saha Ray, S., Singh, S.: New bright soliton solutions for Kadomtsev–Petviashvili–Benjamin–Bona– Mahony equations and bidirectional propagation...
    • 53. Wazwaz, A.M.: Exact solutions of compact and noncompact structures for the KP-BBM equation. Appl. Math. Comput. 169(1), 700–712 (2005)
    • 54. Abdou, M.A.: Exact periodic wave solutions to some nonlinear evolution equations. Int. J. Nonlinear Sci. 6(2), 145–153 (2008)
    • 55. Wazwaz, A.M.: The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos Solit....
    • 56. Yu, Y., Ma, H.C.: Explicit solutions of (2 + 1)-dimensional nonlinear KP-BBM equation by using Exp-function method. Appl. Math. Comput....
    • 57. Song, M., Yang, C., Zhang, B.: Exact solitary wave solutions of the Kadomtsov–Petviashvili– Benjamin–Bona–Mahony equation. Appl. Math....
    • 58. Alam, M.N., Akbar, M.A.: Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G /G)-expansion...
    • 59. Adem, K.R., Khalique, C.M.: Exact solutions and conservation laws of a (2+1)-dimensional nonlinear KP-BBM equation. Abstr. Appl. Anal....
    • 60. Khan, U., Irshad, A., Ahmed, N., Mohyud-Din, S.T.: Improved tan φ(ξ ) 2 -expansion method for (2 + 1)-dimensional KP-BBM wave equation....
    • 61. Manafian, J., Ilhan, O.A., Alizadeh, A.A.: Periodic wave solutions and stability analysis for the KPBBM equation with abundant novel interaction...
    • 62. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2 + 1)-dimensional KP-BBM equation....
    • 63. Kumar, S., Kumar, D., Kharbanda, H.: Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2 + 1)-dimensional...
    • 64. Ren, J., Ilhan, O.A., Bulut, H., Manafian, J.: Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation....
    • 65. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn....
    • 66. Li, L.Q., Gao, Y.T., Yu, X., Liu, F.Y.: Lie group analysis, optimal system and analytic solutions of a (3 + 1)-dimensional generalized...
    • 67. Liu, S.: Multiple rogue wave solutions for the (3 + 1)-dimensional generalized Kadomtsev– Petviashvili–Benjamin–Bona–Mahony equation....
    • 68. Xie, Y., Li, L.: Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev–Petviashvili– Benjamin–Bona–Mahony equation...
    • 69. Yin, Y., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lump waves and breather waves for a (3 + 1)- dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony...
    • 70. Tariq, K.U.H., Seadawy, A.R.: Soliton solutions of(3+1)-dimensional Korteweg–de Vries Benjamin– Bona–Mahony, Kadomtsev–Petviashvili...
    • 71. Bekir, A., Zahran, E.H.: Painlevé approach and its applications to get new exact solutions of three biological models instead of its numerical...
    • 72. Bekir, A., Shehata, M.S., Zahran, E.H.: Comparison between the exact solutions of three distinct shallow water equations using the Painlevé...
    • 73. Bekir, A., Zahran, E.H.: Exact and numerical solutions for the nanosoliton of ionic waves propagating through microtubules in living cells....
    • 74. Zahran, E.H., Bekir, A., Alotaibi, M.F., Omri, M., Ahmed, H.: New impressive behavior of the exact solutions to the Benjamin–Bona–Mahony–Burgers...
    • 75. Bekir, A., Zahran, E.H.: New visions of the soliton solutions to the modified nonlinear Schrödinger equation. Optik 232, 166539 (2021)
    • 76. Bekir, A., Zahran, E.H.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach....
    • 77. Bekir, A., Zahran, E.H., Güner, Ö.: Soliton solutions of the (3 + 1)-dimensional Yu–Toda–Sassa– Fukuyama equation by the new approach...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno