Ir al contenido

Documat


Liouville type theorems for poly-harmonic Dirichlet problems of Hénon-Hardy type equations on a half space or a ball

  • Dai, Wei [1]
    1. [1] Beihang University

      Beihang University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 3, 2023, págs. 729-751
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00371-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we are concerned with the poly-harmonic Dirichlet problems for Hénon-Hardy type equations \begin{aligned} (-\Delta )^{m}u(x)=f(x,u(x)) \,\,\,\,\,\,\,\,\,\,\,\, \text {in} \,\,\, {\mathbb {R}}^{n}_{+} \,\,\, \text {or} \,\,\, B_{R}(0) \end{aligned} with n\ge 2, m\ge 1 and R>0. We prove Liouville theorems for nonnegative solutions to the above poly-harmonic Dirichlet problems and equivalent integral equations in {\mathbb {R}}^{n}_{+} and B_{R}(0) under general assumptions on f. A typical case is the Hénon-Hardy type nonlinearity f(x,u)=|x|^{a}u^{p} with a\in (-2m,+\infty ) and p>0. Our results extend the Liouville results on poly-harmonic Dirichlet problems in Reichel and Weth (Math. Z. 261:805–827, 2009), Fang and Chen (Adv. Math. 229:2835–2867, 2012), Pucci and Serrin (Indiana Univ. Math. J. 35:681–703, 1986, J. Math. Pures Appl. 69:55–83, 1990) from f=u^{p} to general f(x, u).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno