Ir al contenido

Documat


Uniform a priori estimates for positive solutions of higher order Lane-Emden equations in Rn

  • Autores: Wei Dai, Thomas Duyckaerts Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 1, 2021, págs. 319-333
  • Idioma: inglés
  • DOI: 10.5565/publicacionsmatematiques.v65i1.383990
  • Enlaces
  • Resumen
    • In this paper we study the existence of uniform a priori estimates for positive solutions to Navier problems of higher order Lane–Emden equations (0.1)(−∆)mu(x) = u p (x), x ∈ Ω, for all large exponents p, where Ω ⊂ Rn is a star-shaped or strictly convex bounded domain with C2m−2 boundary, n ≥ 4, and 2 ≤ m ≤ n 2 . Our results extend those of previous authors for second order m = 1 to general higher order cases m ≥ 2.

  • Referencias bibliográficas
    • Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc. 132(4) (2004),...
    • A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14(4) (1973),...
    • S. Chandrasekhar, “An Introduction to the Study of Stellar Structure”, Dover Publications, Inc., New York, N. Y. 1957.
    • W. Chen, W. Dai, and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy–H´enon equations...
    • W. Chen, Y. Fang, and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, J. Funct. Anal. 265(8)...
    • W. Dai, S. Peng, and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for non-critical higher order Lane–Emden–Hardy...
    • W. Dai and G. Qin, Liouville type theorems for fractional and higher order H´enon–Hardy type equations via the method of scaling spheres,...
    • W. Dai and G. Qin, Liouville type theorem for critical order H´enon–Lane– Emden type equations on a half space and its applications, Preprint...
    • F. De Marchis, I. Ianni, and F. Pacella, Asymptotic analysis and signchanging bubble towers for Lane–Emden problems, J. Eur. Math. Soc. (JEMS)...
    • F. De Marchis, I. Ianni, and F. Pacella, Asymptotic profile of positive solutions of Lane–Emden problems in dimension two, J. Fixed Point...
    • G. Di, On blow-up of positive solutions for a biharmonic equation involving nearly critical exponent, Comm. Partial Differential Equations...
    • D. E. Edmunds, D. Fortunato, and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal....
    • M. Fazly, J.-C. Wei, and X. Xu, A pointwise inequality for the fourth-order Lane–Emden equation, Anal. PDE 8(7) (2015), 1541–1563. DOI: 10.2140/apde....
    • F. Gazzola, H.-C. Grunau, and G. Sweers, “Polyharmonic Boundary Value Problems”, Positivity preserving and nonlinear higher order elliptic...
    • D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Second edition, Grundlehren der Mathematischen...
    • Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincar´e...
    • Q. Han and F. Lin, “Elliptic Partial Differential Equations”, Second edition, Courant Lecture Notes in Mathematics 1, Courant Institute of...
    • G. P. Horedt, Exact solutions of the Lane–Emden equation in N-dimensional space, Astronom. and Astrophys. 160(1) (1986), 148–156.
    • N. Kamburov and B. Sirakov, Uniform a priori estimates for positive solutions of the Lane–Emden equation in the plane, Calc. Var. Partial...
    • S. I. Pohozaev, Eigenfunctions of the equation ∆u+λf(u) = 0 (Russian), Dokl. Akad. Nauk SSSR 165(1) (1965), 36–39. English translation:...
    • P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35(3) (1986), 681–703. DOI: 10.1512/iumj.1986.35.35036.
    • P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69(1) (1990), 55–83.
    • X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343(2) (1994), 749–763....
    • O. Rey, The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89(1)...
    • B. Sirakov, Existence results and a priori bounds for higher order elliptic equations and systems, J. Math. Pures Appl. (9) 89(2) (2008),...
    • W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42(3) (1981), 400–413. DOI: 10.1016/0022-0396(81)...
    • R. C. A. M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116(4) (1992), 375–398....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno