Ir al contenido

Documat


Positive solutions of nabla fractional boundary value problem

  • Autores: N. S. Gopal, Jagan Mohan Jonnalagadda
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 3, 2022, págs. 467-484
  • Idioma: inglés
  • DOI: 10.56754/0719-0646.2403.0467
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo consideramos el siguiente problema de valor en la frontera de dos puntos discreto fraccional con coeficientes constantes asociado a condiciones de frontera de tipo Dirichlet donde 1 < ν < 2, a, b ∈ ℝ con b −a ∈ ℕ3, = {a+2, a+3, . . . , b}, |λ| < 1, denota la nabla diferencia de Riemann-Liouville de u de orden ν basada en ρ(a) = a − 1, y f: × ℝ → ℝ+. Usamos los teoremas de punto fijo de Guo-Krasnosels’kiĭ y Leggett-Williams en conos adecuados y bajo condiciones apropiadas en la parte nolineal de la ecuación en diferencias. Establecemos requerimientos suficientes para al menos una, al menos dos, y al menos tres soluciones positivas del problema de valor en la frontera considerado. También entregamos un ejemplo para mostrar la aplicabilidad de los resultados.

    • English

      Abstract In this article, we consider the following two-point discrete fractional boundary value problem with constant coefficient associated with Dirichlet boundary conditions. where 1 < ν < 2, a, b ∈ ℝ with b −a ∈ ℕ3, = {a+2, a+3, . . . , b}, |λ| < 1, denotes the ν th-order Riemann-Liouville nabla difference of u based at ρ(a) = a − 1, and f: × ℝ → ℝ+. We make use of Guo-Krasnosels’kiĭ and Leggett-Williams fixed-point theorems on suitable cones and under appropriate conditions on the non-linear part of the difference equation. We establish sufficient requirements for at least one, at least two, and at least three positive solutions of the considered boundary value problem. We also provide an example to demonstrate the applicability of established results.

  • Referencias bibliográficas
    • Anderson, D.,Avery, R.,Peterson, A.. (1998). Three positive solutions to a discrete focal boundary value problem. J. Comput. Appl. Math.....
    • Atıcı, F. M.,Eloe, P. W.. (2009). Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ.. 12
    • Atici, F. M.,Eloe, P. W.. (2011). Linear systems of fractional nabla difference equations. Rocky Mountain J. Math.. 41. 353
    • Atıcı, F. M.,Eloe, P. W.. (2011). Two-point boundary value problems for finite fractional difference equations. J. Difference Equ. Appl.....
    • Atıcı, F. M.,Eloe, P. W.. (2012). Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl.. 64. 3193
    • Bohner, M.,Peterson, A.. (2001). Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston. Boston.
    • Eloe, P.,Jonnalagadda, J.. (2019). Mittag-Leffler stability of systems of fractional nabla difference equations. Bull. Korean Math. Soc.....
    • Eloe, P.,Ouyang, Z.. (2015). Multi-term linear fractional nabla difference equations with constant coefficients. Int. J. Difference Equ.....
    • Ferreira, R. A. C.. (2022). Discrete fractional calculus and fractional difference equations. Springer. Cham.
    • Gholami, Y.,Ghanbari, K.. (2016). Coupled systems of fractional ∇-difference boundary value problems. Differ. Equ. Appl.. 8. 459
    • Goar, J. St.. (2016). A Caputo boundary value problem in nabla fractional calculus. Univ. Nebraska-Lincoln. Nebraska.
    • Goodrich, C.,Peterson, A. C.. (2015). Discrete fractional calculus. Springer. Cham.
    • Gopal, N. S.,Jonnalagadda, J. M.. (2022). Existence and uniqueness of solutions to a nabla fractional difference equation with dual nonlocal...
    • Gorenflo, R.,Kilbas, A. A.,Mainardi, F.,Rogosin, S. V.. (2020). Mittag-Leffler functions, related topics and applications. 2. Springer. Berlin....
    • Gray, H. L.,Zhang, N. F.. (1988). On a new definition of the fractional difference. Math. Comp.. 50. 513
    • Henderson, J.. (2019). Existence of local solutions for fractional difference equations with Dirichlet boundary conditions. J. Difference...
    • Henderson, J.,Neugebauer, J. T.. (2021). Existence of local solutions for fractional difference equations with left focal boundary conditions....
    • Ikram, A.. (2019). Lyapunov inequalities for nabla Caputo boundary value problems. J. Difference Equ. Appl.. 25. 757
    • Jonnalagadda, J. M.. (2018). On two-point Riemann-Liouville type nabla fractional boundary value problems. Adv. Dyn. Syst. Appl.. 13. 141
    • Jonnalagadda, J. M.. (2020). Existence results for solutions of nabla fractional boundary value problems with general boundary conditions....
    • Jonnalagadda, J. M.,Gopal, N. S.. (2020). On hilfer-type nabla fractional differences. Int. J. Differ. Equ.. 15. 91-107
    • Jonnalagadda, J. M.,Gopal, N. S.. (2021). Linear Hilfer nabla fractional difference equations. Int. J. Dyn. Syst. Differ. Equ.. 11. 322
    • Jonnalagadda, J. M.,Gopal, N. S.. (2022). Green’s function for a discrete fractional boundary value problem. Differ. Equ. Appl.. 14. 163
    • Krasnosel’skiĭ, M. A.. (1964). Positive solutions of operator equations. P. Noordhoff Ltd.. The Netherlands.
    • Kwong, M. K.. (2008). On Krasnoselskii’s cone fixed point theorem. Fixed Point Theory Appl.. 18
    • Leggett, R. W.,Williams, L. R.. (1979). Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math....
    • Mehrez, K.,Sitnik, S. M.. (2017). Functional inequalities for the Mittag-Leffler functions. Results Math.. 72. 703
    • Miller, K. S.,Ross, B.. (1989). Univalent functions, fractional calculus, and their applications. Ellis Horwood Limited. Chichester.
    • Ostalczyk, P.. (2016). Discrete fractional calculus: Applications in control and image processing. World Scientific Publishing Co. Pte. Ltd....
    • Paneva-Konovska, J. D.. (2017). From Bessel to multi-index Mittag-Leffler functions. World Scientific Publishing. London.
    • Podlubny, I.. (1999). Fractional differential equations. Academic Press, Inc.. San Diego.
    • Samko, S. G.,Kilbas, A. A.,Marichev, O. I.. (1993). Fractional integrals and derivatives: theory and applications. Gordon & Breach Science...
    • Spanier, J.,Oldham, K. B.. (1987). An Atlas of functions. Hemisphere Publishing Corporation. Washington, DC.
    • Srivastava, H. M.,Owa, S.. (1989). Univalent functions, fractional calculus, and their applications. Ellis Horwood Limited. Chichester.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno