Ir al contenido

Documat


A class of nonlocal impulsive differential equations with conformable fractional derivative

  • Autores: Mohamed Bouaoui, Ahmed Kajouni, Khalid Hilal, Said Melliani
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 3, 2022, págs. 439-455
  • Idioma: inglés
  • DOI: 10.56754/0719-0646.2403.0439
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, tratamos la fórmula de Duhamel, la existencia, unicidad y estabilidad de soluciones mild de una clase de ecuaciones diferenciales no locales impulsivas con derivadas fraccionarias conformables. Los resultados principales se basan en teoría de semigrupos, combinada con algunos teoremas de punto fijo. También entregamos un ejemplo para ilustrar la aplicabilidad de nuestros resultados abstractos.

    • English

      Abstract In this paper, we deal with the Duhamel formula, existence, uniqueness, and stability of mild solutions of a class of non-local impulsive differential equations with conformable fractional derivative. The main results are based on the semi-group theory combined with some fixed point theorems. We also give an example to illustrate the applicability of our abstract results.

  • Referencias bibliográficas
    • Abada, N.,Benchohra, M.,Hammouche, H.. (2010). Existence results for semilinear differential evolution equations with impulses and delay....
    • Abdeljawad, T.. (2015). On conformable fractional calculus. J. Comput. Appl. Math.. 279. 57-66
    • Ahmad, B.,Alghamdi, B.,Agarwal, R. P,Alsaedi, A.. (2022). Riemann-Liouville fractional integrodifferential equations with fractional non-local...
    • Al-Masaeed, M.,Rabei, E.,Al-Jamel, A.. (2021). Wkb approximation with conformable operator. ArXiv.
    • Atraoui, M.,Bouaouid, M.. (2021). On the existence of mild solutions for nonlocal differential equations of the second order with conformable...
    • Benchohra, M.,Henderson, J.,Ntouyas, S. K.. (2006). Impulsive differential equations and inclusions. Hindawi Publishing Corporation. New York....
    • Bhanotar, S. A.,Kaabar, M. K.. (2021). Analytical solutions for the nonlinear partial differential equations using the conformable triple...
    • Binh, T. T.,Luc, N. H.,O’Regan, D.,Can, N. H.. (2019). On an initial inverse problem for a diffusion equation with a conformable derivative....
    • Bonnano, G.,Rodríguez-López, R.,Tersian, S.. (2014). Existence of solutions to boundary value problem for impulsive fractional differential...
    • Bouaouid, M.. (2022). Mild solutions of a class of conformable fractional differential equations with nonlocal conditions. Acta Math. Appl....
    • Bouaouid, M.,Atraoui, M.,Hilal, K.,Melliani, S.. (2018). Fractional differential equations with nonlocal-delay condition. J. Adv. Math. Stud.,....
    • Bouaouid, M.,Hannabou, M.,Hilal, K.. (2020). Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach...
    • Bouaouid, M.,Hilal, K.,Hannabou, M.. (2021). Integral solutions of nondense impulsive conformable-fractional differential equations with nonlocal...
    • Bouaouid, M.,Hilal, K.,Melliani, S.. (2019). Nonlocal conformable fractional Cauchy problem with sectorial operator. Indian J. Pure Appl....
    • Bouaouid, M.,Hilal, K.,Melliani, S.. (2019). Nonlocal telegraph equation in frame of the conformable time-fractional derivative. Adv. Math....
    • Bouaouid, M.,Hilal, K.,Melliani, S.. (2019). Sequential evolution conformable differential equations of second order with nonlocal condition....
    • Bouaouid, M.,Hilal, K.,Melliani, S.. (2020). Existence of mild solutions for conformable-fractional differential equations with non local...
    • Byszewski, L.. (1991). Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math....
    • Cascaval, R. C.,Eckstein, E. C.,Frota, C. L.,Goldstein, J. A.. (2002). Fractional telegraph equations. J. Math. Anal. Appl.. 276. 145
    • Chen, J.,Liu, F.,Anh, V.. (2008). Analytical solution for the time-fractional telegraph equation by the method of separating variables. J....
    • Deng, K.. (1993). Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl.....
    • El-Ajou, A.. (2020). A modification to the conformable fractional calculus with some applications. Alexandria Eng. J.. 59. 2239
    • Eltayeb, H.,Bachar, I.,Gad-Allah, M.. (2019). Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace...
    • Eltayeb, H.,Mesloub, S.. (2020). A note on conformable double Laplace transform and singular conformable pseudoparabolic equations. J. Funct....
    • Gao, F.,Chunmei, C.. (2020). Improvement on conformable fractional ferivative and its applications in fractional differential equations. J....
    • Giga, Y.,Mitake, H.,Sato, S.. (2022). On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion...
    • Hannabou, M.,Bouaouid, M.,Hilal, K.. (2022). Controllability of mild solution of nonlocal conformable fractional differential equations. Adv....
    • Injrou, S.,Karroum, R.,Deeb, N.. (2021). Various exact solutions for the conformable timefractional generalized Fitzhugh-Nagumo equation with...
    • Jneid, M.,Chakik, A. El. (2018). Analytical solution for some systems of nonlinear conformable fractional differential equations. Far East...
    • Khalil, R.,Al Horani, M.,Yousef, A.,Sababheh, M.. (2014). A new definition of fractional derivative. J. Comput. Appl. Math.. 264. 65-70
    • Kilbas, A. A.,Srivastava, H. M.,Trujillo, J. J.. (2006). Theory and applications of fractional differential equations. Elsevier. Amsterdam.
    • Lakshmikantham, V.,Bainov, D. D.,Simeonov, P. S.. (1989). Theory of impulsive differential equations. World Scientific. Singapore.
    • Liang, J.,Liu, J. H.,Xiao, T. J.. (2009). Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput....
    • Liu, J.,Zhang, C.. (2013). Existence and stability of almost periodic solutions to impulsive stochastic differential equations. Cubo. 15....
    • Miller, K. S.,Ross, B.. (1993). An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc.....
    • Momani, S.. (2005). Analytic and approximate solutions of the space and time-fractional telegraph equations. Appl. Math. Comput.. 170. 1126
    • Mophou, G. M.. (2010). Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal.. 72. 1604
    • Oldham, K. B.,Spanier, J.. (1974). The fractional calculus. Academic Press, Inc.. New York.
    • Olmstead, W. E.,Roberts, C. A.. (1997). The one-dimensional heat equation with a nonlocal initial condition. Appl. Math. Lett.. 10. 89-94
    • Pazy, A.. (1983). Semigropus of linear operators and applications to partial differential equations. Springer. New York.
    • Podlubny, I.. (1999). Fractional differential equations. Academic Press, Inc.. San Diego.
    • Rabei, E.,Al-Jamel, A.,Al-Masaeed, M.. (2021). The solution of conformable Laguerre differential equation using conformable Laplace transform....
    • Samko, S. G.,Kilbas, A. A,Marichev, . I. (1993). Fractional integrals and derivatives: theory and applications. Gordon & Breach Science...
    • Thach, T. N.,Can, N. H.,Tri, V. V.. (2021). Identifying the initial state for a parabolic diffusion from their time averages with fractional...
    • Thach, T. N.,Kumar, D.,Luc, N. H.,Phuong, N. D.. (2021). On a semilinear fractional reactiondiffusion equation with nonlocal conditions. Alexandria...
    • Thach, T. N.,Kumar, D.,Luc, N. H.,Tuan, N. H.. (2022). Existence and regularity results for stochastic fractional pseudo-parabolic equations...
    • Thach, T. N.,Tuan, N. H.. (2022). Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion. Stoch....
    • Tuan, N. H.,Phuong, N. D.,Thach, T. N.. (2023). New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discrete Contin....
    • Tuan, N. H.,Thach, T. N.,Can, N. H,O’Regan, D.. (2021). Regularization of a multidimensional diffusion equation with conformable time derivative...
    • Zavalishchin, A.. (1994). Impulse dynamic systems and applications to mathematical economics. Dynam. Systems Appl.. 3. 443
    • Zhou, Y.,Vijayakumar, V.,Murugesu, R.. (2015). Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno