Ir al contenido

Documat


Existence and stability of almost periodic solutions to impulsive stochastic differential equations

  • Junwei Liu [1] ; Chuanyi Zhang [1]
    1. [1] Harbin Institute of Technology

      Harbin Institute of Technology

      China

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 1, 2013, págs. 77-96
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000100005
  • Enlaces
  • Resumen
    • español

      Este artí­culo introduce el concepto de periodicidad cuadrática media por tramos casi periódica para procesos estocásticos impulsivos. La existencia de soluciones de media cuadrática casi periódicas para ecuaciones diferenciales estocásticas impulsivas lineales y no lineales se establece usando la teoría de semigrupos de los operadores y el teorema de punto fijo de Schauder. Se estudia la estabilidad de las soluciones de media cuadrática por tramos casi periódica para ecuaciones diferenciales estocásticas impulsivas no lineales.

    • English

      This paper introduces the concept of square-mean piecewise almost periodic for impulsive stochastic processes. The existence of square-mean piecewise almost periodic solutions for linear and nonlinear impulsive stochastic differential equations is established by using the theory of the semigroups of the operators and Schauder fixed point theorem. The stability of the square-mean piecewise almost periodic solutions for nonlinear impulsive stochastic differential equations is investigated.

  • Referencias bibliográficas
    • Abbas, S. (2011). Pseudo almost periodic solution of stochastic functional differential equations. Int. J. Evol. Equat. 5. 1-13
    • Agarwal, R.P,Cuevas, C,Soto, H,El-Gebeily, M. (2011). Asymptotic periodicity for some evolution equations in Banach spaces. Nonlinear Anal....
    • Agarwal, R.P,de Andrade, B,Cuevas, C. (2010). On type of periodicity and ergodicity to a class of fractional order differential equations....
    • Alzabut, J.O,Stamov, G.T,Sermutlu, E. (2010). On almost periodic solutions for an impulsive delay logarithmic population model. Math. Comput....
    • Basit, B,Pryde, A.J. (2006). Asymptotic behavior of orbits of C0 semigouops and solutions of linear and semilinear abstract differential equations....
    • Bezandry, P.H,Diagana, T. (2007). Existence of almost periodic solutions to some stochastic differential equations. Appl. Anal. 86.
    • Cao, J.F,Yang, Q.G,Huang, Z.T. (2012). On almost periodic mild solutions for stochastic functional differential equations. Nonlinear Anal....
    • Cao, J.F,Yang, Q.G,Huang, Z.T,Liu, Q. (2011). Asymptotically almost periodic solutions of stochastic functional differentail equations. Appl....
    • Caraballo, T,Liu, K. (1999). Exponential stability of mild solutions of stochastic partial differential equation with delays. Stoch. Anal....
    • Chang, Y.K,Zhao, Z.H,N'Guerekata, G.M. (2011). A new composition theorem for square-mean almost automorphic functions and applications...
    • Chen, Z,Lin, W. (2011). Square-mean pseudo almost automorphic process and its application to stochastic evolution equations. J. Funct. Anal....
    • Cuevas, C,Hernandez, E,Rabelo, M. (2009). The existence of solutions for impulsive neutral functional differential equations. Comput. Math....
    • Cuevas, C,N’Guerekata, G.M,Rabelo, M. (2010). Mild solutions for impulsive neutral functional differential equations with state-dependent...
    • Da Prato, G,Tudor, C. (1995). Periodic and almost periodic solutions for semilinear stochastic equations. Stoch. Anal. Appl. 13. 13-33
    • Da Prato, G,Zabczyk, J. (1992). Stochastic Equations in infinity dimensions. Cambrige university press. Cambridge.
    • Fu, M.M. (2012). Almost automorphic solutions for nonautonomous stochastic differential equations. J. Math. Anal. Appl.
    • Fu, M.M,Liu, Z.X. (2010). Square-mean almost periodic solutions for some stochastic differential equations. Proc. Amer. Math. Soc. 138. 3689-3701
    • Henriquez, H.R,De Andrade, B,Rabelo, M. (2011). Existence of almost periodic solutions for a class of abstract impulsive differential equations....
    • Liu, J.W,Zhang, C.Y. (2012). Existence and stability of almost periodic solutions for impulsive differential equations. Adv. Differ. Equ.
    • Long, S.J,Teng, L.Y,Xu, D.Y. (2012). Gobal attaracting set and stability of stochastic neutral partial functional differentail equations with...
    • Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations. Springer. ^eNew York New York.
    • Sakthivel, R,Luo, J. (2009). Asymptotic stability of nonlinear impulsive stochastic differential equations. Stat. Probabil.Lett. 79. 1219-1223
    • Samoilenko, A.M,Perestyuk, N.A. (1995). Impulsive differential equations. World Scientific.
    • Stamov, G.T,Alzabut, J.O,Atanasov, P,Stamov, A.G. (2011). Almost periodic solutions for an impulsive delay model of price fluctuations in...
    • Stamov, G.T,Stamova, I.M. (2007). Almost periodic solutions for impulsive neural networks with delay. Appl. Math. Model. 31. 1263-1270
    • Zhang, R.J,Ding, N,Wang, L.S. (2012). Mean square almost periodic solutions for impulsive stochastic differential equations with delays. J....
    • Zhu, Q.X,Song, B. (2011). Exponential stability of impulsive nonlinear stochastic differential dquations with mixed delay. Nonlinear Anal....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno