Ir al contenido

Documat


Un estudio de la generalización en la clasificación de peatones

  • Ronchetti , Franco ; Quiroga, Facundo [1] ; Camele, Genaro [1] ; Hasperué, Waldo [1] ; Lanzarini, Laura
    1. [1] UNLP
  • Localización: Revista Cubana de Transformación Digital, ISSN-e 2708-3411, Vol. 2, Nº. 1, 2021 (Ejemplar dedicado a: January-March 2021)
  • Idioma: español
  • Títulos paralelos:
    • A study of generalization in `pedestrian classification
  • Enlaces
  • Resumen
    • español

      Desde el surgimiento de los Histogramas de Gradientes Orientados (HOG, por sus siglas en inglés) en 2005 como el descriptor más utilizado para la detección de peatones, ha habido numerosas mejoras en el área. Sin embargo, las bases de datos disponibles para el entrenamiento no suelen ser suficientemente representativas, lo que dificulta su uso en un entorno real diferente al original.

      Este artículo presenta un protocolo para evaluar cómo los modelos de detección de peatones generalizan entre diferentes bases de datos. Dicho protocolo consiste en entrenar un modelo con cada uno de los conjuntos de datos o combinaciones de los mismos y evaluar con la base de datos restante.

      Analizamos la eficacia de los modelos de clasificación de peatones basado en descriptores HOG y/o LBP, y un SVM como clasificador base. Alternativamente, también hacemos uso de un modelo convolucional actual (ConvNets) para verificar que los resultados del protocolo son acordes al conjunto de datos y no al modelo.

      Evaluamos los modelos con las tres bases de datos más utilizadas en el estado del arte: INRIA, Daimler y TUD-Brussels. Los resultados obtenidos muestran que si bien cada conjunto de datos contiene imágenes del mundo real, también contienen sesgos que dificultan que el modelo logre generalizar con otras bases de datos. Los modelos entrenados con dos bases de datos combinadas logran una eficacia ligeramente mejor al evaluar con el tercer conjunto restante frente a los modelos entrenados con un único conjunto de datos, ambos con los clasificadores SVM y ConvNets.

    • English

      Since the surge in popularity of Histogram of Oriented Gradients (HOG) in 2005 as the de facto feature vector for pedestrian detection, there have been many improvements in the detection pipeline that enable state of the art performance to be applicable to many real world problems. Nonetheless, the datasets available for training models have many biases, making it hard to use to detect pedestrians from videos and images obtained from other sources than the datasets.

      This article presents a protocol to evaluate how pedestrian models generalize between different datasets. The protocol roughly consists of training a model with each dataset or dataset combination, and evaluating with the remaining dataset in each case.

      We use the protocol to evaluate the performance of a typical pedestrian classification model based on HOG and/or LBP features and a SVM classifier. Alternatively, we also use a modern ConvNets model, to verify that the results of the protocol are due to the datasets and not the model.

      We evaluate the models with the three most used datasets for pedestrian classification: INRIA, Daimler and TUD-Brussels. Our results show that while each dataset presents real world scenes, there are significant biases in each dataset that prevent models trained on one dataset to generalize to other datasets. Models trained on two fused datasets perform only marginally better on the third dataset than models trained on individual datasets, both for SVM and ConvNet classifiers.

  • Referencias bibliográficas
    • Azulay, A., Weiss, Y. (2019). Why do deep convolutional networks generalize so poorly to small image transformations?. Journal of Machine...
    • Benenson, R., Omran, M., Hosang, J., Schiele, B. (2015). Ten years of pedestrian detection, what have we learned? In: Computer Vision - ECCV...
    • Camele, G., Quiroga, F., Ronchetti, F., Hasperué, W., Lanzarini, L.C. (2018). Transferencia de aprendizaje para la detección de peatones....
    • Cao, X., Wang, Z., Yan, P., Li, X. (2013). Transfer learning for pedestrian detection. Neurocomputing, 100, 51-57, special issue: Behaviours...
    • Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision...
    • Dollar, P., Wojek, C., Schiele, B., Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern...
    • Enzweiler, M., Gavrila, D.M. (2008). Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis & Machine...
    • Gan, G., Cheng, J. (2011). Pedestrian detection based on hog-lbp feature. 2011 Seventh International Conference on Computational Intelligence...
    • He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern...
    • Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B. (2008) Discriminative local binary patterns for human detection in personal album. In: IEEE...
    • Ouyang, W., Wang, X. (2013). Single-pedestrian detection aided by multi-pedestrian detection. IEEE Conference on Computer Vision and Pattern...
    • Pei, W.J., Zhang, Y.L., Zhang, Y., Zheng, C.H. (2014). Pedestrian detection based on HOG and LBP. In: Intelligent Computing Theory. (pp. 715-720)....
    • Wang, X., Han, T.X., Yan, S. (2009). An hog-lbp human detector with partial occlusion handling. In: IEEE 12th International Conference on...
    • Wojek, C., Walk, S., Schiele, B. (2009). Multi-cue onboard pedestrian detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition...
    • Yan, J., Zhang, X., Lei, Z., Liao, S., Li, S.Z. (2013). Robust multi-resolution pedestrian detection in traffic scenes. 2013 IEEE Conference...
    • Zhang, L., Lin, L., Liang, X., He, K. (2016). Is faster r-cnn doing well for pedestrian detection?. Computer Vision and Pattern Recognition....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno