Ir al contenido

Documat


Historic Behavior in Rock–Paper–Scissor Dynamics

  • Mansoor Saburov [1]
    1. [1] American University of the Middle East
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In the evolutionary dynamics of the Rock–Paper–Scissor game, it is common to see the emergence of heteroclinic cycles. The dynamics in the vicinity of a stable heteroclinic cycle is marked by intermittency, where an orbit remains close to the heteroclinic cycle, repeatedly approaching and lingering at the saddles for increasing periods of time, and quickly transitioning from one saddle to the next. This causes the time spent near each saddle to increase at an exponential rate. This highly erratic behavior causes the time averages of the orbit to diverge, a phenomenon known as historic behavior.

      The problem of describing persistent families of systems exhibiting historic behavior, known as Takens’ Last Problem, has been widely studied in the literature. In this paper, we propose a persistent and broad class of replicator equations generated by increasing functions which exhibit historic behavior wherein the slow oscillation of time averages of the orbit ultimately causes the divergence of higher-order repeated time averages.

  • Referencias bibliográficas
    • 1. Andersson, M., Guiheneuf, P.-A.: Historic behaviour vs. physical measures for irrational flows with multiple stopping points. Adv. Math....
    • 2. Araujo, V., Pinheiro, V.: Abundance of wild historic behavior. Bull. Braz Math. Soc., New Series 52(1), 41–76 (2021)
    • 3. Baranski, K., Misiurewicz, M.: Omega-limit sets for the Stein-Ulam spiral map. Top. Proc. 36, 145–172 (2010)
    • 4. Barrientos, P., Kiriki, S., Nakano, Y., Raibekas, A., Soma, T.: Historic behavior in nonhyperbolic homoclinic classes. Proc. Amer. Math....
    • 5. Berger, P.: Emergence and non-typicality of the finiteness of the attractors in many topologies. Proceed. Steklov Instit. Math. 297, 1–27...
    • 6. Berger, P.: Complexities of differentiable dynamical systems. J. Math. Phys. 61, 032702 (2020)
    • 7. Berger, P., Biebler, S.: Emergence of wandering stable components. J. Amer. Math. Soc. 36, 397–482 (2023)
    • 8. Berger, P., Bochi, J.: On emergence and complexity of ergodic decompositions. Adv. Math. 390, 107904 (2021)
    • 9. Bonatti, C., Diaz, L., Viana, M.: Dynamics beyond uniform hyperbolicity. Springer, Berlin (2000)
    • 10. Carvalho, M., Varandas, P.: Genericity of historic behavior for maps and flows. Nonlinearity 34(10), 7030–7044 (2021)
    • 11. Colli, E., Vargas, E.: Non-trivial wandering domains and homoclinic bifurcations. Ergod. Theor. Dynam. Syst. 21, 1657–1681 (2001)
    • 12. Cressman, R.: Evolutionary dynamics and extensive form games. MIT Press, Cambridge (2003)
    • 13. de Santana, H.L.: Historic behavior for flows with the gluing orbit property. J. Korean Math. Soc. 59(2), 337–352 (2022)
    • 14. Ganikhodzhaev, N., Zanin, D.: On a necessary condition for the ergodicity of quadratic operators, defined on the two-dimensional simplex....
    • 15. Gaunersdorfer, A.: Time averages for heteroclinic attractors. SIAM J. Math. Anal. 52, 1476–1489 (1992)
    • 16. Hofbauer, J.: Heteroclinic cycles in ecological differential equations. Tatra Mount. Math. Publ. 4, 105–116 (1994)
    • 17. Hofbauer, J., Sigmund, K.: The theory of evolution and dynamical systems. Cambridge University Press, Cambridge (1988)
    • 18. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)
    • 19. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Amer. Math. Soc. 40(4), 479–519 (2003)
    • 20. Jamilov, U., Mukhamedov, F.: A class of Lotka-Volterra operators with historical behavior. Results Math. 77(4), 169 (2022)
    • 21. Jamilov, U., Mukhamedov, F.: Historical behavior for a class of Lotka–Volterra systems. Math. Meth. Appl. Sci. 45(17), 11380–11389 (2022)
    • 22. Jamilov, U., Scheutzow, M., Vorkastner, I.: A prey-predator model with three interacting species. Dyn. Syst. (2023). https://doi.org/10.1080/14689367.2023.2206546
    • 23. Jordan, T., Naudot, V., Young, T.: Higher order Birkhoff averages. Dyn. Syst. 24(3), 299–313 (2009)
    • 24. Hou, Z., Baigent, S.: Heteroclinic cycles in competitive Kolmogorov systems. Disc. Cont. Dyn. Sys. 33(9), 4071–4093 (2013)
    • 25. Kiriki, S., Li, M., Soma, T.: Geometric lorenz flows with historic behavior. Disc. Cont. Dyn. Sys. 36(12), 7021–7028 (2016)
    • 26. Kiriki, S., Nakano, Y., Soma, T.: Historic behaviour for nonautonomous contraction mappings. Disc. Cont. Dyn. Sys. 32(3), 1111–1124 (2019)
    • 27. Kiriki, S., Nakano, Y., Soma, T.: Emergence via non-existence of averages. Adv. Math. 400, 108254 (2022)
    • 28. Kiriki, S., Soma, T.: Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. 306, 524–588 (2017)
    • 29. Kon, R.: Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems. Proc. Amer. Math. Soc. 134, 3025 (2006)
    • 30. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Th. Dynam. Sys. 15, 121–147 (1995)
    • 31. Kesten, H.: Quadratic transformations: a model for population growth I. Adv. Appl. Probab. 2, 1–82 (1970)
    • 32. Labouriau, I., Rodrigues, A.: On Takens last problem: tangencies and time averages near heteroclinic networks. Nonlinearity 30(5), 1876–1910...
    • 33. Menzel, M. T., Stein, P. R., Ulam, S. M.: Quadratic transformations. Part 1, Los Alamos Scientific laboratory report LA-2305 (1959)
    • 34. Marshall, A., Olkin, I., Arnold, B.: Inequalities: theory of majorization and its applications. Springer, Berlin (2011)
    • 35. Peixe, T., Rodrigues, A.: Persistent strange attractors in 3D polymatrix replicators. Physica D: Nonlin. Phenom. 438, 133346 (2022)
    • 36. Ruelle, D.: Historic behavior in smooth dynamical Systems in Global Analysis of Dynamical Systems ed H. W. Broer et al (2001)
    • 37. Saburov, M.: A class of nonergodic Lotka-Volterra operators. Math. Notes 97(5–6), 759–763 (2015)
    • 38. Saburov, M.: On divergence of any order Cesaro mean of Lotka-Volterra operators. Ann. Fun. Anal. 6(4), 247–254 (2015)
    • 39. Saburov, M.: Dichotomy of iterated means for nonlinear operators. Funct. Anal. its Appl. 52(1), 74–76 (2018)
    • 40. Saburov, M.: Nonergodic quadratic stochastic operators. Math. Notes 106(1), 142–145 (2019)
    • 41. Saburov, M.: Iterated means dichotomy for discrete dynamical systems. Qual. Theory Dyn. Syst. 19, 25 (2020)
    • 42. Saburov, M.: The discrete-time Kolmogorov systems with historic behavior. Math. Meth. Appl. Sci. 44(1), 813–819 (2021)
    • 43. Saburov, M.: Uniformly historic behaviour in compact dynamical systems. J. Differ. Equ. Appl. 27(7), 1006–1023 (2021)
    • 44. Saburov, M.: Historic behavior in discrete-time replicator dynamics. Math. Notes 112(1–2), 332–336 (2022)
    • 45. Saburov, M.: Some examples for stable and historic behavior in replicator equations. Examp. Counterexampl. 2, 100091 (2022)
    • 46. Saburov, M.: Stable and historic behavior in replicator equations generated by similar-order preserving mappings. Milan J. Math. 91(1),...
    • 47. Saburov, M.: Historic behavior in Rock–Paper–Scissor dynamics II, (Submitted)
    • 48. Sandholm, W.H.: Population games and evolutionary dynamics. MIT Press, Cambridge (2010)
    • 49. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100(3), 533–538 (1983)
    • 50. Sigmund, K.: Time averages for unpredictable orbits of deterministic systems. Ann. Oper. Res. 37, 217–228 (1992)
    • 51. Takens, F.: Orbits with historic behavior, or non-existence of averages - Open Problem. Nonlinearity 21, 33–36 (2008)
    • 52. Taylor, P.D., Jonker, L.: Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)
    • 53. Ulam, S.: A collection of mathematical problems. Interscience, New-York & London (1960)
    • 54. Vallander, S.S.: The limiting behavior of the sequences of iterates of certain quadratic transformations. Soviet Math. Dokl. 13, 123–126...
    • 55. Yang, D.: On the historical behavior of singular hyperbolic attractors. Proc. Amer. Math. Soc. 148, 1641–1644 (2020)
    • 56. Zakharevich, M.: On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33(6),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno