Ir al contenido

Documat


Complex Dynamics for an Immunosuppressive Infection Model with Virus Stimulation Delay and Nonlinear Immune Expansion

  • Yi Chen [1] ; Lianwen Wang [1] ; Zhijun Liu [1] ; Yating Wang [1]
    1. [1] Hubei Minzu University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 3, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This work brings nonlinear Beddington–DeAngelis immune expansion and virus stimulation delay into a classical immunosuppressive infection model developed by Komarova et al. (Proc Natl Acad Sci USA 100(4):1855–1860, 2003) to seek for the effective strategies in realizing the “functional cure” goal with sustained immunity.

      ompared with the classical model, stability analysis indicates that the nonlinear immune expansion brings about qualitative changes in dynamic features, and new immune control equilibrium appears even under the weak viral inhibitory effects.

      Global stability analysis for the model without delay shows that the unique local stable equilibrium is also globally asymptotically stable, and it just exhibits bistability dynamics and saddle-node bifurcation. While the virus stimulation delay induces plenty of complex dynamical features, including Hopf bifurcation, homoclinic, heteroclinic and singular closed orbits, sustained and transient oscillations. Numerical investigation reveals that a reduction in the two key parameters involved in the nonlinear immune expansion (i.e., immune competition intensity and virus inhibition intensity) can lengthen the bistable interval and expand the virus-control region, which enables the model to more readily stabilize at either an immune control equilibrium or a periodic orbit, achieving sustained immunity. Moreover, several strategies including the drug therapies targeted at the reduction in the two key parameters and the delay, could effectively shorten therapy duration, as well as the implementation of the weak intensity of therapy still can realize sustained immunity if the delay remains relatively small.

  • Referencias bibliográficas
    • 1. Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H., Freeman, G.L., Ahmed, R.: Restoring function in exhausted...
    • 2. Wijaya, R.S., Read, S.A., Selvamani, S.P., Schibeci, S., Azardaryany, M.K., Ong, A., van der Poorten, D., Lin, R., Douglas, M.W., George,...
    • 3. Davenport, M.P., Khoury, D.S., Cromer, D., Lewin, S.R., Kelleher, A.D., Kent, S.J.: Functional cure of HIV: the scale of the challenge....
    • 4. Meng, Z., Chen, Y., Lu, M.: Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front....
    • 5. Autran, B., Descours, B., Avettand-Fenoel, V., Rouzioux, C.: Elite controllers as a model of functional cure. Curr. Opin. HIV AIDS 6(3),...
    • 6. Wagner, R., Randolph, J.T., Patel, S.V., et al.: Highlights of the structure-activity relationships of benzimidazole linked pyrrolidines...
    • 7. Nath, B.J., Sarmah, H.K., Maurer, H.: An optimal control strategy for antiretroviral treatment of HIV infection in presence of immunotherapy....
    • 8. Sáez-Cirión, A., Bacchus, C., Hocqueloux, L., et al.: Post-treatment HIV-1 controllers with a long-term virological remission after the...
    • 9. Deeks, S.G., Walker, B.D.: Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral...
    • 10. Browne, C.J., Smith, H.L.: Dynamics of virus and immune response in multi-epitope network. J. Math. Biol. 77(6), 1833–1870 (2018)
    • 11. Prosperi, M.C.F., D’Autilia, R., Incardona, F., De Luca, A., Zazzi, M., Ulivi, G.: Stochastic modelling of genotypic drug-resistance for...
    • 12. Rife Magalis, B., Autissier, P., Williams, K.C., Chen, X., Browne, C., Salemi, M.: Predator-prey Dynamics of intra-host simian immunodeficiency...
    • 13. Komarova, N.L., Barnes, E., Klenerman, P., Wodarz, D.: Boosting immunity by antiviral drug therapy: a simple relationship among timing,...
    • 14. Wang, S., Xu, F.: Thresholds and bistability in virus-immune dynamics. Appl. Math. Lett. 78, 105–111 (2018)
    • 15. Wang, S., Li, H., Xu, F.: Monotonic and nonmonotonic immune responses in viral infection systems. Discrete Contin. Dyn. Syst. Ser. B 27(1),...
    • 16. Wang, S., Xu, F., Rong, L.: Bistability analysis of an HIV model with immune response. J. Biol. Syst. 25(4), 677–695 (2017)
    • 17. Wang, S., Xu, F.: Analysis of an HIV model with post-treatment control. J. Appl. Anal. Comput. 10(2), 667–685 (2020)
    • 18. Wodarz, D., Nowak, M.A.: Immune responses and viral phenotype: do replication rate and cytopathogenicity influence virus load? Comput....
    • 19. De Boer, R.J.: Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus. J. Virol. 81(6),...
    • 20. Wodarz, D.: Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology. Springer, New York (2007)
    • 21. De Boer, R.J., Perelson, A.S.: Towards a general function describing T cell proliferation. J. Theor. Biol. 175(4), 567–576 (1995)
    • 22. De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190(3), 201–214...
    • 23. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340...
    • 24. Bairagi, N., Adak, D.: Dynamics of cytotoxic T-lymphocytes and helper cells in human immunodeficiency virus infection with Hill-type infection...
    • 25. Jiang, C., Wang, W.: Complete classification of global dynamics of a virus model with immune responses. Discrete Contin. Dyn. Syst. Ser....
    • 26. Shu, H., Wang, L., Watmough, J.: Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive...
    • 27. Shu, H., Wang, L.: Joint impacts of therapy duration, drug efficacy and time lag in immune expansion on immunity boosting by antiviral...
    • 28. Li, J., Ma, X., Li, J., Zhang, D.: Dynamics of a chronic virus infection model with viral stimulation delay. Appl. Math. Lett. 122, 107547...
    • 29. Liu, Z., Wang, L., Tan, R.: Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response....
    • 30. Chun, T.W., Stuyver, L., Mizell, S.B., Ehler, L.A., Mican, J.A.M., Baseler, M., Lloyd, A.L., Nowak, M.A., Fauci, A.S., Info, A.: Presence...
    • 31. Lewin, S.R., Ribeiro, R.M., Walters, T., Lau, G.K., Bowden, S., Locarnini, S., Perelson, A.S.: Analysis of hepatitis B viral load decline...
    • 32. Bekkering, F.C., Stalgis, C., McHutchison, J.G., Brouwer, J.T., Perelson, A.S.: Estimation of early hepatitis C viral clearance in patients...
    • 33. Johansen, P., Storni, T., Rettig, L., et al.: Antigen kinetics determines immune reactivity. Proc. Natl. Acad. Sci. USA 105(13), 5189–5194...
    • 34. Nathanson, N.: Viral Pathogenesis and Immunity, 2nd edn. Academic Press, London (2008)
    • 35. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)
    • 36. Conway, J.M., Perelson, A.S.: Post-treatment control of HIV infection. Proc. Natl. Acad. Sci. USA 112(17), 5467–5472 (2015)
    • 37. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno