Ir al contenido

Documat


Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-Yamaguchi good covering and Jordan Curve Theorems

  • Peters, James Francis [1] ; Vergili, Tane [2]
    1. [1] University of Manitoba

      University of Manitoba

      Canadá

    2. [2] Karadeniz Technical University

      Karadeniz Technical University

      Turquía

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 1, 2023, págs. 25-45
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.17046
  • Enlaces
  • Resumen
    • This paper introduces proximal path cycles, which lead to the main results in this paper, namely, extensions of the Mitsuishi-Yamaguchi Good Coverning Theorem with different forms of Tanaka good cover of an Alexandrov space equipped with a proximity relation as well as extension of the Jordan curve theorem. In this work, a path cycle is a sequence of maps h1,...,hi,...,hn-1 mod n in which hi  : [ 0,1 ] → X and hi(1) = hi+1(0) provide the structure of a path-connected cycle that has no end path. An application of these results is also given for the persistence of proximal video frame shapes that appear in path cycles.

  • Referencias bibliográficas
    • A. Di Concilio, C. Guadagni, J. F. Peters, and S. Ramanna, Descriptive proximities I: properties and interplay between classical proximities...
    • V. A. Efremovič, The geometry of proximity {I} (in {R}ussian), Mat. Sb. (N.S.) 31(73), no. 1 (1952), 189-200.
    • F. Hausdorff, Grundzüge der Mengenlehre, Veit and Company, Leipzig, viii + 476 pp, 1914.
    • F. Hausdorff, Set Theory, trans. by J. R. Aumann, Providence, RI, AMS Chelsea Publishing, 352 pp, 1957.
    • P. J. Hilton, An introduction to homotopy theory. Cambridge Tracts in Mathematics and Mathematical Physics, no. 43, Cambridge University Press,...
    • C. Jordan, Cours d'analyse de l'École polytechnique, Tome I-III, Éditions Jacques Gabay, Sceaux, 1991 (reprint of 1915 edition, Tome...
    • A. Mitsuishi and T. Yamaguchi, Good coverings of Alexandrov spaces, Trans. Amer. Math. Soc. 372, no. 11 (2019), 8107-8130. https://doi.org/10.1090/tran/7849
    • L. Mosher, Tiling the projective foliation space of a punctured surface, Trans. Amer. Math. Soc. 306, no.1 (1988), 1-70. https://doi.org/10.1090/S0002-9947-1988-0927683-0
    • J. R. Munkres, Elements of Algebraic Topology, 2nd Ed., Perseus Publishing, Cambridge, MA, ix + 484 pp, 1984.
    • S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Tract in Mathematics No. 59, Cambridge University Press, Cambridge Uk, x+128...
    • S. A. Naimpally and J. F. Peters, Preservation of continuity, Scientiae Mathematicae Japonicae 76, no.2 (2013), 305-311.
    • S. A. Naimpally and J. F. Peters, Topology with Applications. Topological Spaces via Near and Far, World Scientific, Singapore, 2013. https://doi.org/10.1142/8501
    • J. F. Peters and S. A. Naimpally, Applications of near sets, Notices of the Amer. Math. Soc. 59, no.4 (2012), 536-542. https://doi.org/10.1090/noti817
    • J. F. Peters, Near sets: An introduction, Math. in Comp. Sci. 7, no. 1 (2013), 3-9. https://doi.org/10.1007/s11786-013-0149-6
    • J. F. Peters, Topology of Digital Images. Visual Pattern Discovery in Proximity Spaces, Intelligent Systems Reference Library 63, Springer,...
    • J. F. Peters, Computational Proximity. Excursions in the Topology of Digital Images, Intelligent Systems Reference Library vol.102, Springer,...
    • J. F. Peters, Vortex nerves and their proximities. Nerve Betti numbers and descriptive proximity, Bull. Allahabad Math. Soc. 34, no. 2 (2019),...
    • J. F. Peters, Homotopic Nerve Complexes with Free Group Presentations, Int. Online Conf. Alegebraic and Geometric Methods of Analysis, 25-28...
    • J. F. Peters, E. Inan, A. Tozzi, and S. Ramanna, Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain...
    • J. F. Peters, Temporal Proximity of 1-cycles in CW Spaces. Time-Varying Cell Complexes, Fund. Contemp. Math. Sci 2, no. 2 (2021), 1-20.
    • J. F. Peters and T. Vergili, Fixed point property of amenable planar vortexes, Applied General Topology 22, no. 2 (2021), 385-397. https://doi.org/10.4995/agt.2021.15096
    • V. Puisséux, Recherches sur les fonctions algbriques, Journal de mathématiques pures et appliq 15 (1850), 365-480.
    • Ju. M. Smirnov, On proximity spaces, Math. Sb. (N.S.) 31, no. 73 (1952), 543-574 (English translation: Amer. Math. Soc. Trans. Ser. 2, 38...
    • Ju. M. Smirnov, On proximity spaces in the sense of V. A. Efremovič, Math. Sb. (N.S.) 84, (1952), 895-898 (English translation: Amer. Math....
    • R. M. Switzer, Algebraic topology - homology and homotopy, Springer, Berlin, xii+526 pp, 2002. https://doi.org/10.1007/978-3-642-61923-6_8
    • K. Tanaka, Simple homotopy theory and nerve theorem for categories, Topology Appl. 291 (2021), 1-23. https://doi.org/10.1016/j.topol.2021.107609
    • E. Čech, Topological Spaces, John Wiley & Sons Ltd., London, 1966 (fr seminar, Brno, 1936-1939; rev. ed. Z. Frolik, M. Katĕtov).
    • R. Vanden Eynde, Historical evolution of the concept of homotopic paths, Arch. Hist. Exact Sci. 45, no.2 (1992), 127-188. https://doi.org/10.1007/BF00374251
    • F. Vigolo, The geometry and topology of wide ribbons, University of Oxford, UK, Balliol College, 207 pp, 2018 (Supervisor: Cornelia Druţu).
    • S. Willard, General Topology, Dover Pub., Inc., Mineola, NY, xii + 369pp, 1970.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno