Ir al contenido

Documat


Fixed point property of amenable planar vortexes

  • Peters, James Francis [2] ; Vergili, Tane [1]
    1. [1] Karadeniz Technical University

      Karadeniz Technical University

      Turquía

    2. [2] University of Manitoba ; Adiyaman University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 2, 2021, págs. 385-397
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.15096
  • Enlaces
  • Resumen
    • This article introduces free group representations of planar vortexes in a CW space that are a natural outcome of results for amenable groups and fixed points found by M.M. Day during the 1960s and a fundamental result for fixed points given by L.E.J. Brouwer.

  • Referencias bibliográficas
    • C. Adams and R. Franzosa, Introduction to topology: Pure and applied, 1st ed., Pearson, London, UK, (2008), 512 pp., ISBN-13: 9780131848696.
    • L. Boxer, O. Ege, I. Karaca, J. Lopez and and J. Louwsma, Digital fixed points, approximate fixed points and universal functions, Applied...
    • L. E. J. Brouwer, Über abbildung von mannigfaltigkeiten, Math. Ann. 71 (1911), 97-115. https://doi.org/10.1007/BF01456931
    • E. Cech, Topological spaces, John Wiley & Sons Ltd., London, (1966), fr seminar, Brno, 1936-1939.
    • A. Di Concilio, C. Guadagni, J. F. Peters and S. Ramanna, Descriptive proximities. Properties and interplay between classical proximities...
    • M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. https://doi.org/10.1215/ijm/1255380675
    • M. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. https://doi.org/10.1215/ijm/1255631582
    • J. Frisch, O. Tamuz and P. V. Ferdowsi, Strong amenability and the infinite conjugacy class property, Invent. Math. 218, no. 3 (2019), 833-351....
    • S. Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. Tokyo 14, no. 7 (1938), 242-245. https://doi.org/10.3792/pia/1195579652
    • A. A. Markov, Quelques thérè sur les ensembles abéliens, C.R. (Doklady) Acad. Sci. URSS (N.S.) 1 (1936), 311-313.
    • S. A. Naimpally and J. F. Peters, Topology with applications. Topological spaces via near and far, World Scientific, Singapore, (2013), xv...
    • S. A. Naimpally and B. D. Warrack, Proximity spaces, Cambridge Tract in Mathematics No. 59, Cambridge University Press, Cambridge, UK, 1970,...
    • J. F. Peters, Topology of digital images. Visual pattern discovery in proximity spaces, Intelligent Systems Reference Library, vol. 63, Springer,...
    • J. F. Peters, Vortex nerves and their proximities. Nerve Betti numbers and descriptive proximity, Bull. Allahabad Math. Soc. 34, no. 2 (2019),...
    • J. F. Peters, Ribbon complexes & their approximate descriptive proximities. Ribbon & vortex nerves, Betti numbers and planar divisions,...
    • A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
    • J. J. Rotman, The theory of groups. An introduction, Springer-Verlag, New York, 1965, 1995, xvi+513 pp. ISBN: 0-387-94285-8.
    • E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.,CA, (1966), xiv+528 pp. https://doi.org/10.1007/978-1-4684-9322-1_5
    • J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proceedings of the London Math. Soc. 45 (1939), 243-327. https://doi.org/10.1112/plms/s2-45.1.243
    • J. H. C. Whitehead, Combinatorial homotopy. I, Bulletin of the American Mathematical Society 55, no. 3 (1949), 213-245. https://doi.org/10.1090/S0002-9904-1949-09175-9

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno