Ir al contenido

Documat


Ground State and Sign-Changing Solutions for Critical Schrödinger–Poisson System with Lower Order Perturbation

  • Ziheng Zhang [2] ; Ying Wang [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

    2. [2] TianGong University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article is devoted to study the following Schrödinger–Poisson system {−Δu+V(x)u+K(x)ϕu=a(x)|u|p−2u+|u|4u,−Δϕ=K(x)u2,x∈R3,x∈R3, where 4 < p < 6 , V(x), K(x) and a(x) are nonnegative functions. Under some reasonable conditions on V(x), K(x) and a(x), particularly a(x) can be unbounded, we first investigate the existence of one positive ground state solution and the corresponding energy estimate with the help of Nehari manifold. Meanwhile, its regularity is established through the interior Lp -estimate. Subsequently, heavily relying on the above results, especially the regularity, we show that the problem possesses one least energy sign-changing solution with precisely two nodal domains by employing constraint variational method and the deformation lemma due to Hofer. Moreover, energy doubling is established, that is, the energy of sign-changing solution is strictly larger than that of the ground state solution.

  • Referencias bibliográficas
    • 1. Alves, C.O., Souto, M.A.S., Soares, S.H.M.: A sign-changing solution for the Schrödinger–Poisson equation in R3. Rocky Mountain J. Math....
    • 2. Alves, C.O., Souto, Marco AS.: Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly....
    • 3. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on RN , Progr. Math. vol. 240. Birkhäuser (2006)
    • 4. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)
    • 5. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2005)
    • 6. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré...
    • 7. Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger–Poisson system with sign-changing potentials. Nonlinear...
    • 8. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
    • 9. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490...
    • 10. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl....
    • 11. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27, 1041–1053...
    • 12. Cerami, G.: Some nonlinear elliptic problems in unbounded domains. Milan J. Math. 74, 47–77 (2006)
    • 13. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents....
    • 14. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
    • 15. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in R3. Z. Angew. Math. Phys....
    • 16. Chen, X., Tang, C.: Least energy sign-changing solutions for Schrödinger–Poisson system with critical growth. Commun. Pure Appl. Anal....
    • 17. Chen, X., Tang, C.: Positive and sign-changing solutions for critical Schrödinger-Poisson systems with sign-changing potential. Qual....
    • 18. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)
    • 19. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger– Maxwell equations. Proc. R. Soc. Edinburgh...
    • 20. D’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud....
    • 21. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ....
    • 22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen...
    • 23. Hirano, N., Shioji, N.: A multiplicity result including a sign-changing solution for an inhomogeneous Neumann problem with critical exponent....
    • 24. Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261, 493–514 (1982)
    • 25. Huang, L., Rocha, E.M.: A positive solution of a Schrödinger–Poisson system with critical exponent. Commun. Math. Anal. 15, 29–43 (2013)
    • 26. Huang, L., Rocha, E.M., Chen, J.: Positive and sign-changing solutions of a Schrödinger–Poisson system involving a critical nonlinearity....
    • 27. Ianni, I.: Sign-changing radial solutions for the Schrödinger–Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 356–385 (2013)
    • 28. Khoutir, S.: Infinitely many high energy radial solutions for a class of nonlinear Schrödinger–Poisson system in R3. Appl. Math. Lett....
    • 29. Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012)
    • 30. Li, G.: Some properties of weak solutions of nonlinear scalar fields equation. Ann. Acad. Sci. Fenn. Math. 14, 27–36 (1989)
    • 31. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12,...
    • 32. Li, Y., Li, F., Shi, J.: Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term....
    • 33. Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3. J. Math. Anal. Appl....
    • 34. Liu, Z., Guo, S.: On ground state solutions for the Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 412, 435–448...
    • 35. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger– Poisson system. Ann. Mat. Pura Appl....
    • 36. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)
    • 37. Qian, A., Liu, J., Mao, A.: Ground state and nodal solutions for a Schrödinger–Poisson equation with critical growth. J. Math. Phys. 59,...
    • 38. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of Nonlinear Problems, pp. 141–195....
    • 39. Ruiz, D.: Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci....
    • 40. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
    • 41. Sánchez, O., Soler, J.: Long-time dynamics of the Schröginger–Poisson–Salter system. J. Stat. Phys. 144, 179–204 (2004)
    • 42. Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3....
    • 43. Strume, M.: Variational Methods: Applications to Nonlinear Partial Differential equations and Hamiltonian Systems, 4th edn. Springer,...
    • 44. Sun, J., Wu, T., Feng, Z.: Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system. J. Differ. Equ. 260, 586–627...
    • 45. Tang, X.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal....
    • 46. Tarantello, G.: Nodal solutions of semilinear elliptic equations with critical exponent. Differ. Integral Equ. 5, 25–42 (1992)
    • 47. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger– Poisson system with critical growth....
    • 48. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in...
    • 49. Wang, Z., Zhou, H.: Positive solutions for a nonlinear stationary Schrödinger–Poisson system in R3. Discrete Contin. Dyn. Syst. 18, 809–816...
    • 50. Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3. Calc. Var. Partial Differ. Equ. 52, 927–943...
    • 51. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston (1996)
    • 52. Xie, W., Chen, H., Shi, H.: Multiplicity of positive solutions for Schrödinger–Poisson systems with a critical nonlinearity in R3. Bull....
    • 53. Ye, C., Teng, K.: Ground state and sign-changing solutions for fractional Schrödinger–Poisson system with critical growth. Complex Var....
    • 54. Ye, Y.: Ground state solutions for nonautonomous Schrödinger–Poisson systems involving critical exponent. Bull. Math. Soc. Sci. Math....
    • 55. Zhang, Z., Wang, Y., Yuan, R.: Ground state sign-changing solution for Schrödinger–Poisson system with critical growth. Qual. Theory Dyn....
    • 56. Zhang, J.: On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75, 6391–6401 (2012)
    • 57. Zhang, J.: On ground state and nodal solutions of Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 428, 387–404...
    • 58. Zhang, J.: Ground state and multiple solutions for Schrödinger–Poisson equations with critical nonlinearity. J. Math. Anal. Appl. 440,...
    • 59. Zhang, J., do Ó, J.M., Squassina, M.: Schrödinger-Poisson systems with a general critical nonlinearity. Commun. Contemp. Math. 1650028...
    • 60. Zhang, X., Ma, S., Xie, Q.: Bound state solutions for Schrödinger–Poisson system with critical exponent. Discrete Contin. Dyn. Syst. 37,...
    • 61. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger–Poisson system with a critical nonlinearity in R3. Nonlinear...
    • 62. Zou, W.: Sign-Changing Critical Point Theory. Springer, New York (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno