Ir al contenido

Documat


Positive and Sign-changing Solutions for Critical Schrödinger–Poisson Systems with Sign-changing Potential

  • Xiao-Ping Chen [1] ; Chun-Lei Tang [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the following critical Schrödinger–Poisson system {−Δu+V(x)u+K(x)ϕu=f(u)+|u|4u, −Δϕ=K(x)u2, x∈R3, x∈R3, where V(x) is a (possible) sign-changing potential, K(x) is a nonnegative function and the nonlinearity f∈C(R,R). By using variational methods with a more general global compactness lemma, we obtain a positive least energy solution and a least energy sign-changing solution with exactly two nodal domains, and we also prove that the energy of least energy sign-changing solution is strictly larger than twice that of least energy solutions. Moreover, this paper further analyzes the exponential decay of the positive least energy solution given by Liu, Liao and Tang (Nonlinearity 30 (2017), 899–911), and can be regarded as the supplementary work of it.

  • Referencias bibliográficas
    • 1. Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials. Nonlinear...
    • 2. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)
    • 3. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14(4),...
    • 4. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345...
    • 5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3),...
    • 6. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math....
    • 7. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents....
    • 8. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differential Equations 248(3), 521–543...
    • 9. Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for asymptotically cubic or super-cubic Schrödinger-Poisson systems without...
    • 10. Chen, X.-P., Tang, C.-L.: Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Commun. Pure Appl....
    • 11. Furtado, M.F., Maia, L.A., Medeiros, E.S.: Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential....
    • 12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1998)
    • 13. Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261(4), 493–514 (1982)
    • 14. Li, G.B.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. Ser. A I Math. 15(1), 27–36 (1990)
    • 15. Li, G.B., Yan, S.S.: Eigenvalue problems for quasilinear elliptic equations on RN . Comm. Partial Differential Equations 14(8–9), 1291–1314...
    • 16. Liu, J., Liao, J.-F., Tang, C.-L.: Ground state solution for a class of Schrödinger equations involving general critical growth term....
    • 17. Liu, Z.S., Guo, S.J.: Existence of positive solutions for Kirchhoff-type problems. Nonlinear Anal. 120, 1–13 (2015)
    • 18. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. (2) 3, 5–7 (1940). ((Italian))
    • 19. Nie, J.J., Li, Q.Q.: Multiplicity of sign-changing solutions for a supercritical nonlinear Schrödinger equation. Appl. Math. Lett. 109,...
    • 20. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo...
    • 21. Sun, J.J., Ma, S.W.: Ground state solutions for some Schrödinger-Poisson systems with periodic potentials. J. Differential Equations 260(3),...
    • 22. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent....
    • 23. Wang, D.-B., Zhang, H.-B., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth....
    • 24. Wang, Z.P., Zhou, H.-S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. Calc. Var. Partial Differential Equations...
    • 25. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
    • 26. Ye, Y.W., Tang, C.-L.: Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential. Calc. Var....
    • 27. Zhang, J.: On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 428(1), 387–404...
    • 28. Zhang, Z.H., Wang, Y., Yuan, R.: Ground state sign-changing solution for Schrödinger-Poisson system with critical growth. Qual. Theory...
    • 29. Zhao, L.G., Liu, H.D., Zhao, F.K.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential....
    • 30. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R3. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno