Ir al contenido

Documat


Monophonic graphoidal covering number of corona product graphs

  • Titus, P. [2] ; Subha, M. [2] ; Santha Kumari, S. [1]
    1. [1] Manonmaniam Sundaranar University

      Manonmaniam Sundaranar University

      India

    2. [2] Anna University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 2, 2023, págs. 303-318
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4781
  • Enlaces
  • Resumen
    • In a graph G, a chordless path is called a monophonic path. A collection ψm of monophonic paths in G is called a monophonic graphoidal cover of G if every vertex of G is an internal vertex of at most one monophonic path in ψm and every edge of G is in exactly one monophonic path in ψm. The monophonic graphoidal covering number ηm(G) of G is the minimum cardinality of a monophonic graphoidal cover of G. In this paper, we find the monophonic graphoidal covering number of corona product of some standard graphs.

  • Referencias bibliográficas
    • B. D. Acharya, "Further results on the graphoidal covering number of a graph", Graph Theory News Letter, vol. 17, no. 4, pp. 1, 1988.
    • B. D. Acharya and E. Sampathkumar, “Graphoidal covers and graphoidal covering number of a graph”, Indian Journal of Pure and Applied Mathematics,...
    • S. Arumugam and C. Pakkiam, “Graphs with unique mínimum graphoidal cover”, Indian Journal of Pure and Applied Mathematics, vol. 25, no. 11,...
    • S. Arumugam and J. Suresh Suseela, “Acyclic graphoidal covers and path partitions in a graph”, Discrete Mathematics, vol. 190, pp. 67-77,...
    • S. Arumugam and J. Suresh Suseela, “Geodesic graphoidal covering number of a graph”, The Journal of the Indian Mathematical Society, vol....
    • F. Harary, Graph Theory. Addison - Wesley, Reading Mass, 1969.
    • C. Pakkiam and S. Arumugam, “On the graphoidal covering number of a graph”, Indian Journal of Pure and Applied Mathematics, vol. 20, no. 4,...
    • C. Pakkiam and S. Arumugam, “The graphoidal covering number of unicyclic graphs”, Indian Journal of Pure and Applied Mathematics, vol. 23,...
    • K. R. Singh and P.K. Das, “On graphoidal covers of bicyclic graphs”, International Mathematical Forum, vol. 5, no. 42, pp. 2093-2101, 2010.
    • A.P. Santhakumaran and P. Titus, “Monophonic distance in graphs”, Discrete Mathematics, Algorithms and Applications, vol. 3, no. 2, pp. 159-169,...
    • A.P. Santhakumaran and P. Titus, “A note on ‘Monophonic distance in graphs”, Discrete Mathematics, Algorithms and Applications, vol. 4, no....
    • P. Titus and S. Santha Kumari, “The monophonic graphoidal covering number of a graph”, International Journal of Pure and Applied Mathematics,...
    • P. Titus and S. Santha Kumari, “Monophonic Graphoidal Covering Number of a Bicyclic Graph”, Communicated.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno