Ir al contenido

Documat


On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space

  • Richard Delanghe [1]
    1. [1] Ghent University

      Ghent University

      Arrondissement Gent, Bélgica

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 12, Nº. 2, 2010, págs. 145-167
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462010000200010
  • Enlaces
  • Resumen
    • español

      Para s ∈ {0, 1, ...,m+ 1} (m ≥ 2) , IR(s)0,m+1 el espacio de los s-vectors en el algebra de Clifford IR0,m+1 construida sobre el espacio de vectores cuadráticos IR0,m+1 sea r, p, q, ∈ IN tal que 0 ≤ r ≤ m + 1, p < q. El sistema lineal asociado de ecuaciones diferenciales parciales de primer orden derivado de la ecuaci´on ∂xW = 0 donde W es IR(r,p,q)0,m+1 = ∑q j=p ⊕IR(r+2j)0,m+1 1-valuada y ∂x es el operador de Dirac en IRm+1, es llamado un sistema de Moisil-Théodoresco generalizado de tipo (r, p, q) en IRm+1. Para k ∈ N, k ≥ 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denota el espacio de polinomios homogéneosWk IR(r,p,q)0,m+1- valuados de grado k en IRm+1. satisfaciendo ∂xWx = 0. Una caracterización de Wk∈ MT+(m+1; k; IR(r,p,q)0,m+1) es dada en términos de un potencial armónico Hk+1 perteneciendo a una subclase de armónicos consistentes IR(r,p,q)0,m -valuados de grado (k + 1) in IRm+1. Además es probado que todo Wk∈ MT+(m + 1; k; IR(r,p,q)0,m+1) admite una primitiva Wk+1 ∈ MT+(m + 1; k + 1; IR(r,p,q)0,m+1). Una especial atención es dada a los casos de dimensión baja IR³ y IR4. En particular, un metodo es desarrollado para construir bases para espaciosMT+(4; k; IR(r,p,q)0,4 ), r siendo par.

    • English

      Let for s ∈ {0, 1, ...,m+ 1} (m ≥ 2) , IR(s)0,m+1 be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, ∈ IN be such that 0 ≤ r ≤ m + 1, p < q and r + 2q ≤ m + 1. The associated linear system of first order partial differential equations derived from the equation ∂xW = 0 where W is IR(r,p,q)0,m+1 = ∑q j=p ⊕IR(r+2j)0,m+1 -valued and ∂x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k ∈ N, k ≥ 1,MT+(m+ 1; k; IR(r,p,q)0,m+1), denotes the space of IR(r,p,q)0,m+1-valued homogeneous polynomials Wc of degree k in IRm+1 satisfying ∂xWx = 0. A characterization of Wk∈ MT+(m + 1; k;IR(r,p,q)0,m+1) is given in terms of a harmonic potential Hk+1 belonging to a subclass of IR(r,p,q)0,m -valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk∈ MT+(m+ 1; k; IR(r,p,q)0,m+1) admits a primitive Wk+1 ∈ MT+(m+ 1; k + 1; IR(r,p,q)0,m+1). Special attention is paid to the lower dimensional cases IR³ and IR4. In particular, a method is developed for constructing bases for the spaces MT+(4; k; IR(r,p,q)0,4), r being even.

  • Referencias bibliográficas
    • Abreu Blaya, R,Bory Reyes, J,Delanghe, R,Sommen, F. (2008). Generalized Moisil- Théodoresco systems and Cauchy integral decompositions. Int....
    • Brackx, F,Delanghe, R. (2003). On harmonic potential fields and the structure of monogenic funtions. . Anal. Anwendungen. 22. 261-273
    • Brackx, F,Delanghe, R,Sommen, F. (2005). Differential forms and / or multi-vector functions. CUBO. 7. 139-170
    • Cação, I. (2004). Constructive approximation by monogenic polynomials. Ph. D-thesis, Universidade de Aveiro.
    • Cialdea, A. (1998). On the theory of self-conjugate differential forms. Atti del Seminario Matematico e Fisico dell’ Universit di Modena....
    • Delanghe, R. (2006). On primitives of monogenic funtions. Complex Variables and Elliptic Equations. 51. 959-970
    • Delanghe, R. (2009). On homogeneous polynomial solutions of the Moisil-Théodoresco system in IR³. Computational Methods and Function Theory....
    • Delanghe, R,Sommen, F,Soucek, V. (1992). Clifford algebra and Spinor-Valued Functions.
    • Dzhuraev, A. (1992). Methods of singular equations. Longman. Harlow.
    • Folland, G. (1976). Introduction to Partial Differential Equations. Princeton Univ. Press. Princeton.
    • Gürlebeck, K,Cação, I. (2004). ICNAAM 2004, International conference on numerical analysis and applied mathematics. Chalkis, Greece.
    • Gürlebeck, K,Habetha, K,Sproessig, W. (2007). Holomorphic functions in the plane and n-dimensional space. Birkhäuser Verlag. Basel.
    • Gürlebeck, K,Malonek, H. (1999). A hypercomplex derivative of monogenic functions in IRn+1 and its applications. Complex Variables. 39....
    • Gürlebeck, K,Sproessig, W. (1989). Quatermonic Analysis and Elliptic Boundary Value Problems. Akademie-Verlag. Berlin,.
    • Kravchenko, V,Shapiro, M. (1996). Integral Respresentations for Spatial Models of Mathematical Physics. Pitman Research Notes in Mathematics...
    • Maurin, K. (1980). Analysis. Publishing CompanyPWNPolish Scientific Publishers. Dordrecht-Boston-London.
    • Moisil, Gr,Théodoresco, N. (1931). Fonctions holomorphes dans l’espace. Mathematica Cluj. 5. 142-159
    • Nolder, C. (2005). Conjugate harmonic functions and Clifford algebras. J. Math. Anal. Appl.. 302. 137-142
    • Stein, E,Weiss, G. (1960). On the theory of harmonic functions of several variables. I. The Theory of Hp-spaces, Acta Mathematica. 103. 25-62
    • Stein, E,Weiss, G. (1968). Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90. 163-196
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno