Ir al contenido

Documat


Existence and Multiplicity of Mild Solutions for First-Order Hamilton Random Impulsive Differential Equations with Dirichlet Boundary Conditions

  • Qian-Bao Yin [1] ; Yu Guo [1] ; Dan Wu [1] ; Xiao-Bao Shu [1]
    1. [1] Hunan University

      Hunan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the sufficient conditions for multiple solutions of first-order Hamiltonian random impulsive differential equations under Dirichlet boundary value conditions. For systems with random impulses, the variational principle with random impulses is constructed, and the energy function is treated by its conjugate action.

      Then, the generalized saddle point theorem is used to show that the energy functional has multiple critical points, that is, the first-order Hamiltonian random impulses differential equation has multiple weak solutions. Finally, we give an example to illustrate the feasibility and effectiveness of this method.

  • Referencias bibliográficas
    • 1. Smith, R.J., Wahl, L.M.: Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection...
    • 2. Smith, R.J., Wahl, L.M.: Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 67,...
    • 3. Tang, S., Chen, L.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 44, 185–199 (2002)
    • 4. Lakmeche, A., Aqino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment....
    • 5. Liu, X.: Stability results for impulsive differential systems with applications to population growth models. Dyn. Stabil. Syst. 9(2), 163–174...
    • 6. Guo, Y., Shu, X., Yin, Q.: Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary...
    • 7. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)
    • 8. Choisy, M., Guegan, J.F., Rohani, P.: Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects....
    • 9. Gao, S., Chen, L., Nieto, J.J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine...
    • 10. Jiao, J., Yang, X., Chen, L., Cai, S.: Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input....
    • 11. Ekeland, I., Hofer, H.: Subharmonics for convex nonautonomous Hamiltonian systems. Commun. Pure Appl. Math. 40, 1–36 (1987)
    • 12. Li, Z., Soh, Y., Wen, C.: Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46, 894 (2001)
    • 13. Liu, X.: Impulsive stabilization and control of chaotic system. Nonlinear Anal.: Theory,Methods Appl. 47, 1081–1092 (2001)
    • 14. Cortés, J.C., Delgadillo-Aleman, S.E., Kú-Carrillo, R.A., Villanueva, R.J.: Full probabilistic analysis of random first-order linear differential...
    • 15. Cortés, J.C., Delgadillo-Alemán, S.E., Kú-Carrillo, R.A., Villanueva, R.J.: Probabilistic analysis of a class of impulsive linear random...
    • 16. Li, Z., Shu, X., Xu, F.: The existence of upper and lower solutions to second order random impulsive differential equation with boundary...
    • 17. Shu, X., Xu, Y., Huang, L.: Infinite periodic solutions to a class of second-order Sturm–Liouville neutral differential equations. Nonlinear...
    • 18. Shu, X., Xu, Y.: Multiple periodic solutions for a class of second-order nonlinear neutral delay equations. Abstr. Appl. Anal. (2006)....
    • 19. Shu, X., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, 465–476 (2016)
    • 20. Guo, Y., Shu, X., Li, Y., Xu, F.: The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral...
    • 21. Guo, Y., Shu, X.-B., Fei, X., Yang, C.: HJB equation for optimal control system with random impulses. Optimization (2022). https://doi.org/10.1080/02331934.2022.2154607
    • 22. Vinodkumar, A., Senthilkumar, T., Hariharan, S., Alzabut, J.: Exponential stabilization of fixed and random time impulsive delay differential...
    • 23. Kawakubo, T., Kobayashi, T., Sakamoto, S.: Drift motion of granules in chara cells induced by random impulses due to the myosin-actin...
    • 24. Long, Y., Xu, X.: Periodic solutions for a class of nonautonomous Hamiltionian systems. Nonlinear Anal.: Theory Methods Appl. 41, 455–463...
    • 25. Timoumi, M.: Subharmonie oscillations of a class of Hamiltonian systems. Nonlinear Anal. Theory Methods Appl. 68, 2697–2708 (2008)
    • 26. Liu, P., Guo, F.: Multiplicity of periodic solutions for second order Hamiltonian systems with asymptotically quadratic conditions. Acta...
    • 27. Liu, Y., Guo, F.: Multiplicity of periodic solutions for a class of second-order perturbed Hamiltonian systems. J. Math. Anal. Appl. 491,...
    • 28. Silva, E.A.: Subharmonic solutions for subquadratic Hamiltonian systems. J. Differ. Equ. 115, 120–145 (1995)
    • 29. Sun, J., Chen, H., Nieto, J.J.: Infinitely many solutions for second-order Hamiltonian system with impulsive effects. Math. Comput. Model....
    • 30. Sun, J., Chen, H., Nieto, J.J., Mario, O.N.: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive...
    • 31. Wang, S., Shu, X., Shu, L.: Existence of solutions to a class of damped random impulsive differential equations under Dirichlet boundary...
    • 32. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)
    • 33. Liu, J.Q.: A generalized saddle point theorem. J. Differ. Equ. 82(2), 372–385 (1989)
    • 34. Timoumi, Mohsen: Subharmonic oscillations of a class of Hamiltonian systems. Nonlinear Anal.: Theory Methods Appl. 68(9), 2697–2708 (2008)
    • 35. Tian, Y., Ge, W.: Multiple periodic solutions for a class of non-autonomous Hamiltonian systems with even-typed potentials. J. Dyn. Control...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno