Ir al contenido

Documat


Ground State Sign-Changing Solutions for Schrödinger-Kirchhoff Equation with Asymptotically Cubic or Supercubic Nonlinearity

  • Cai-Ni Yang [1] ; Chun-Lei Tang [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the existence of a least energy sign-changing solution for the following Schrödinger-Kirchhoff equation ⎧ ⎨ ⎩ −(a + b R3 |∇u| 2dx)u + V(x)u = f (x, u), x ∈ R3, u ∈ H1(R3) (SK) where a, b > 0 are parameters, V ∈ C(R3, R+) and f ∈ C(R3 ×R, R). The potential function V satisfies some suitable conditions and the nonlinearity f satisfies mild assumptions. By using sign-changing Nehari manifold, we prove that this problem possesses a ground state sign-changing solution with precisely two nodal domains, and its energy is strictly larger than twice that of ground state solutions. Besides, we obtain a convergence property of ubn as bn 0. Our results unify asymptotically cubic, which enrich and improve the previous ones in the literature.

  • Referencias bibliográficas
    • 1. Kirchhoff, G.: Mechanik. Teubner, Leipzip (1883)
    • 2. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
    • 3. Lion, J.L.: On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and...
    • 4. Zou, W.M., Schechter, M.: Critical Point Theory and its Applications. Springer, New York (2006)
    • 5. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré...
    • 6. Bartsch, T., Liu, Z.L., Weth, T.: Sign changing solutions of superlinear Schrodinger equations. Comm. Partial Differ. Equa. 29, 25–42 (2005)
    • 7. Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity. Acta Math. Hungar. 157,...
    • 8. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402...
    • 9. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ Equ. 259, 1256–1274 (2015)
    • 10. Wang, D.B.: Least energy sign-changing solutions of Kirchhoff-type equation with critical growth. J. Math. Phys. 61, 011501 (2020)
    • 11. Zhong, X.J., Tang, C.L.: The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, Commun....
    • 12. Li, X., Guan, W., Wang, D.B.: Least energy sign-changing solutions of Kirchhoff equation on bounded domains. AIMS Math. 7(5), 8879–8890...
    • 13. Cheng, B.T., Tang, X.H.: Ground state sign-changing solutions for asymptotically 3-linear Kirchhofftype problems. Complex Var. Elliptic...
    • 14. Zhang, Z.T., Kanishka, P.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl....
    • 15. Anmin, M., Luan, S.X.: Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J. Math. Anal. Appl....
    • 16. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J. Differ Equ. 257(2),...
    • 17. Xie, Q.: Bounded state solution of degenerate Kirchhoff type problem with a critical exponent. J. Math. Anal. Appl. 479, 1–24 (2019)
    • 18. Lei, C.Y., Liu, G.S., Guo, L.T.: Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity. Nonlinear Anal....
    • 19. Lin, X., Wei, J.: Existence and concentration of ground state solutions for a class of Kirchhoff-type problems. Nonlinear Anal. 195, 111715...
    • 20. Wu, K., Zhou, F., Gu, G.: Some remarks on uniqueness of positive solutions to Kirchhoff type equations. Appl. Math. Lett. 142, 107642...
    • 21. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical...
    • 22. Ye, H.Y.: The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN. J. Math. Anal....
    • 23. Li, Q., Du, X.S., Zhao, Z.Q.: Existence of sign-changing solutions for nonlocal Kirchhoff-Schrodingertype equations in R3. J. Math. Anal....
    • 24. Cheng, B.T., Chen, J.H., Tang, X.H.: Existence and concentration of ground state sign-changing solutions for Kirchhoff type equations...
    • 25. Xie, Q.: Least energy nodal solution for Kirchhoff type problem with an asymptotically 4-linear nonlinearity. Appl. Math. Lett. 102, 106157...
    • 26. Feng, R.T., Tang, C.L.: Ground state sign-changing solutions for a Kirchhoff equation with asymptotically 3-linear nonlinearity. Qual....
    • 27. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state Arch Ration. Mech Anal. 82, 313–345 (1983)
    • 28. Miranda, C.: Unosservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 3, 5–7 (1940)
    • 29. Cheng, B.T., Chen, J.H., Zhang, B.L.: Least energy nodal solution for Kirchhoff-type Laplacian problems. Math Meth Appl Sci. 43, 3827–3849...
    • 30. Willem, M.: Minimax Theorems. Birkhüuser, Boston (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno