Ir al contenido

Documat


Ground State Sign-Changing Solutions for a Kirchhoff Equation with Asymptotically 3-Linear Nonlinearity

  • Feng, Ren-Ting [1] ; Tang, Chun-Lei [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00529-y
  • Enlaces
  • Resumen
    • In this paper, we investigate the following nonlinear Kirchhoff equation −(a+b∫R3|∇u|2dx)△u+V(x)u=f(u),x∈R3, where a, b are positive constants, V is a potential and f∈C(R3×R,R) is an asymptotically 3-linear nonlinearity. By using sign-changing Nehari manifold, we can not only get the existence of ground state sign-changing solution under the condition of b>0. but also can prove that its energy is strictly larger than twice that of ground state solutions. In addition, we obtain a convergence property of ubn as bn→0. In this article, we present weaker hypotheses than those that can be found (Xie in Adv Differ Equ 121:1–14, 2016).

  • Referencias bibliográficas
    • 1. Chen, B., Tang, X.: Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems. Complex Var. Elliptic Equ....
    • 2. Chen, B., Li, G., Tang, X.: Nehari-type ground state solution for Kirchhoff type problem in RN . Appl. Anal. 98(7), 1255–1266 (2019)
    • 3. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhofftype problems in R3. J. Funct. Anal....
    • 4. Figueiredo, G.M., Nascimento, R.G.: Existence of a nodal solution with minimal energy for a Kirchhoff equation. Math. Nachr. 288(1), 48–60...
    • 5. Fan, H.N.: Existence of ground state solutions for Kirchhoff-type problem involving critical Sobolev exponents. Math. Methods Appl. Sci....
    • 6. Jia, H.F.: Ground state solutions for the nonlinear Kirchhoff type equations with lower term. J. Math. Phys. 61, 111506 (2020)
    • 7. Kirchhoff, G.: Mechanik. Teubner, Leipzip (1883)
    • 8. Li, Q., Du, X., Zhao, Z.: Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in R3. J. Math. Anal....
    • 9. Lu, S.-S.: Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains. J. Math. Anal. Appl. 432(2), 965–982 (2015)
    • 10. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff-type equations in R3. J. Differ. Equ. 257(2),...
    • 11. Mao, A., Luan, S.: Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J. Math. Anal. Appl. 383(1),...
    • 12. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70(3),...
    • 13. Mao, A., Zhu, X.C.: Existence and multiple results for Kirchhoff problems. Mediterr. J. Math. 14, 58 (2017)
    • 14. Miranda, C.: Unsservazione su un teorema di Brouwer, Boll. Unione Mat. Ital. (2) 3 (1940) 5–7
    • 15. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1), 246–255 (2006)
    • 16. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)
    • 17. Sun, J., Li, L., Cencelj, M., Gabrovsk, B.: Infinitely many sign-changing solutions for Kirchhoff type problems in R3. Nonlinear Anal....
    • 18. Tang, X.H., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261(4), 2384–2402...
    • 19. Xu, L., Chen, H.: Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent. Adv. Differ. Equ. 121, 1–14...
    • 20. Xie, Q.: Least energy nodal solution for Kirchhoff type problem with an asymptotically 4-linear nonlinearity. Appl. Math. Lett. 102, 106–157...
    • 21. Ye, H.: The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN . J. Math. Anal....
    • 22. Zou, W.: Sign-Changing Critical Point Theory. Springer, New York (2008)
    • 23. Zhong, X.-J., Tang, C.-L.: The existance and nonexistence result of ground state nodal solution for a Kirchhoff type problem. Commun....
    • 24. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R3. Nonlinear...
    • 25. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317(2),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno