Ir al contenido

Documat


Local Topological Stability for Diffeomorphisms

  • Manseob Lee [1]
    1. [1] Mokwon University

      Mokwon University

      Corea del Sur

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let f : M → M be a diffeomorphism of compact smooth Riemannian manifold M, an let ⊂ M be a closed f -invariant set. We obtain conditions for to be topologically stable which is called -topologically stable. Moreover, we prove that if f is C1 robustly -topologically stable then satisfies star condition for f . Then in the above, if a closed f -invariant set is chain transitive (or transitive) then it is hyperbolic for f .

  • Referencias bibliográficas
    • 1. Aoki, N.: The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Bras. Mat. 23, 21–65 (1992)
    • 2. Aoki, N., Hiraide, K.: Topological theory of dynamical systems, North-Holland, (1994)
    • 3. Crobvisier, S.: Periodic orbits and chain-transitive sets ofC1 diffeomorphisms. Publ. Math. Inst. Hautes Etudes Sci. 104, 87–141 (2006)
    • 4. Franks, J.: Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc. 158, 301– 308 (1971)
    • 5. Gan, S., Wen, L.: Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 164, 279–315 (2006)
    • 6. Hayashi, S.: Diffeomorphisms in F1(M) satisfy Axiom A. Ergodic Thoery Dyn. Syst. 12, 233–253 (1992)
    • 7. Lee, K., Wen, X.: Shadowable chain transitive sets of C1-generic diffeomorphisms. Bull. Korean Math. Soc. 49, 263–270 (2012)
    • 8. Lee, M. : Inverse pseudo orbit tracing property for robust diffeomorphisms. Chaos Soliton. Fract. 160, 112150 (2022)
    • 9. Lee, M.: Robustly chain transitive diffeomorphisms. J. Inequal. Appl. 2015(230), 1–6 (2015)
    • 10. Moriyasu, K.: The topological stability of diffeomorphisms. Nagoya Math. J. 123, 91–102 (1991)
    • 11. Nitecki, Z.: On semistability for diffeomorphisms. Invent. Math. 14, 83–122 (1971)
    • 12. Nitecki, Z., Shub, M.: Filtarations, decompositions and exposions. Amer. J. Math. 97, 1029–1047 (1976)
    • 13. Palis, J.: On the C1-stability conjecture. Publ. Math. l’I.H.É.S. 66, 211–215 (1988)
    • 14. Pilyugin, S.Y.: The Space of Dynamical Systems with theC0-Topology. Lecture Notes in Mathematics, vol. 1571. Springer-Verlag, Berlin (1994)
    • 15. Sakai, K.: Shadowable chain transitive sets. J. Differ. Equ. Appl. 19, 1601–1618 (2013)
    • 16. Smale, S.: The -stability thereom, in Global Analysis Proc. Symp. Pure Math. Amer. Math. Soc. 14, 289–297 (1970)
    • 17. Walters, P.: Anosov diffeomorphisms are topologically stable. Topology 9, 71–78 (1970)
    • 18. Walters, P.: On the pseudo orbit tracing property and its relationship to stability, Dynamical SystemsWarwick 1974A Manning (Ed.), Springer...
    • 19. Yang, D., Gan, S.: Expansive homoclinic classes. Nonlinearity 22, 729–733 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno