Ir al contenido

Documat


Periodic orbits and chain-transitive sets of C1-diffeomorphisms

  • Autores: Sylvain Crovisier
  • Localización: Publications Mathématiques de L'IHÉS, ISSN 0073-8301, Vol. 104, Nº. 1, 2006, págs. 87-141
  • Idioma: inglés
  • DOI: 10.1007/s10240-006-0002-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes.

      This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff1(M).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno