Ir al contenido

Documat


Hybrid (Φ,Ψ, ρ, ζ, θ)−invexity frameworks and efficiency conditions for multiobjective fractional programming problems

  • Ram U Verma [1]
    1. [1] Texas State University

      Texas State University

      Estados Unidos

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 17, Nº. 1, 2015, págs. 41-63
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462015000100004
  • Enlaces
  • Resumen
    • español

      Se desarrollan las condiciones de eficiencia suficiente generalizadas paramétricamente de programación multifraccional multiobjetivo basado en las invexidades-(Φ,Ψ, ρ, ζ, θ)− híbridas y luego se establecen las soluciones eficientes a los problemas de programación fraccional multiobjetivo. Además, los resultados obtenidos sobre condiciones de eficiencia suficiente se generalizan al caso de soluciones ?-eficientes. Los resultados obtenidos generalizan y unifican una amplia gama de investigaciones en la teoría y aplicaciones de la programación fraccional multiobjetivo basado en el marco de trabajo de las invexidades-(Φ,Ψ, ρ, ζ, θ)−.

    • English

      The parametrically generalized sufficient efficiency conditions for multiobjective fractional programming based on the hybrid (Φ,Ψ, ρ, ζ, θ)−invexities are developed and then efficient solutions to the multiobjective fractional programming problems are established. Plus, the obtained results on sufficient efficiency conditions are generalized to the case of the ?−efficient solutions. The results thus obtained generalize and unify a wider range of investigations on the theory and applications to the multiobjective fractional programming based on the hybrid (Φ,Ψ, ρ, ζ, θ)−invexity frameworks.

  • Referencias bibliográficas
    • Ben-Israel, A,Mond, B. (1986). What is the invexity. Journal of Australian Mathematical Society Ser. B. 28. 1-9
    • Caiping, L,Xinmin, Y. (2009). Generalized (ρ, θ, η)-invariant monotonicity and generalized (ρ, θ, η)-invexity of non-differentiable functions....
    • Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications. 80. 545-550
    • Jeyakumar, V. (1985). Strong and weak invexity in mathematical programming. Methods Oper. Res. 55. 109-125
    • Kawasaki, H. (1988). Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications. Journal of Optimization...
    • Kim, M. H,Kim, G. S,Lee, G. M. (2011). On ?-optimality conditions for multiobjective fractional optimization problems. Fixed Point Theory...
    • Liu, J. C. (1999). Second order duality for minimax programming. Utilitas Math. 56. 53-63
    • Mangasarian, O. L. (1975). Second- and higher-order duality theorems in nonlinear programming. J. Math. Anal. Appl. 51. 607-620
    • Mishra, S. K. (1997). Second order generalized invexity and duality in mathematical programming. Optimization. 42. 51-69
    • Mishra, S. K. (2000). Second order symmetric duality in mathematical programming with F-convexity. European J. Oper. Res. 127. 507-518
    • Mishra, S. K,Rueda, N. G. (2000). Higher-order generalized invexity and duality in mathematical programming. J. Math. Anal. Appl. 247. 173-182
    • Mishra, S. K,Rueda, N. G. (2006). Second-order duality for nondifferentiable minimax programming involving generalized type I functions. J....
    • Mishra, S. K,Laha, V,Verma, R. U. (2011). Generalized vector variational-like inequalities and nonsmooth vector optimization of radially continuous...
    • Mond, B,Weir, T. (1981). Generalized convexity and higher-order duality. J. Math. Sci. 16. 74-94
    • Mond, B,Zhang, J. (1995). Duality for multiobjective programming involving second-order Vinvex functions. Proceedings of the Optimization...
    • Mond, B,Zhang, J. (1998). Generalized Convexity, Generalized Monotonicity: Recent Results. Kluwer Academic Publishers.
    • Patel, R. B. (1997). Second order duality in multiobjective fractional programming. Indian J. Math. 38. 39-46
    • Srivastava, M. K,Bhatia, M. (2006). Symmetric duality for multiobjective programming using second order (F, ρ)-convexity. Opsearch. 43. 274-295
    • Srivastava, K. K,Govil, M. G. (2000). Second order duality for multiobjective programming involving (F, ρ, σ)-type I functions. Opsearch....
    • Suneja, S. K,Lalitha, C. S,Khurana, S. (2003). Second order symmetric duality in multiobjective programming. European J. Oper. Res. 144. 492-500
    • Vartak, M. N,Gupta, I. (1987). Duality theory for fractional programming problems under η- convexity. Opsearch. 24. 163-174
    • Verma, R. U. (2013). Weak ?-efficiency conditions for multiobjective fractional programming. Applied Mathematics and Computation. 219. 6819-6827
    • Verma, R. U. (2013). New ?-optimality conditions for multiobjective fractional subset programming problems. Transactions on Mathematical Programming...
    • Verma, R. U. (2014). Second-order (Φ, η, ρ, θ)-invexities and parameter-free o-efficiency conditions for multiobjective discrete minmax fractional...
    • Yang, X. M. (1995). Second order symmetric duality for nonlinear programs. Opsearch. 32. 205-209
    • Yang, X. M. (2009). On second order symmetric duality in nondifferentiable multiobjective programming. J. Ind. Manag. Optim. 5. 697-703
    • Yang, X. M,Hou, S. H. (2001). Second-order symmetric duality in multiobjective programming. Appl. Math. Lett. 14. 587-592
    • Yang, X. M,Teo, K. L,Yang, X. Q. (2004). Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming....
    • Yang, X. M,Yang, X. Q,Teo, K. L. (2003). Nondifferentiable second order symmetric duality in mathematical programming with F-convexity. European...
    • Yang, X. M,Yang, X. Q,Teo, K. L. (2005). Huard type second-order converse duality for nonlinear programming. Appl. Math. Lett. 18. 205-208
    • Yang, X,Yang, X. Q,Teo, K. L. (2008). Higher-order symmetric duality in multiobjective programming with invexity. J. Ind. Manag. Optim. 4....
    • Yang, X. M,Yang, X. Q,Teo, K. L,Hou, S. H. (2004). Second order duality for nonlinear programming. Indian J. Pure Appl. Math. 35. 699-708
    • Yokoyama, K. (1996). Epsilon approximate solutions for multiobjective programming problems. Journal of Mathematical Analysis and Applications....
    • Zalmai, G. J. (2007). Global parametric sufficient optimality conditions for discrete minmax fractional programming problems containing generalized...
    • Zalmai, G. J. (2012). Generalized second-order (F, β,φ, ρ, θ)-univex functions and parametric duality models in semiinfinite discrete minmax...
    • Zalmai, G. J,Zhang, Q. (2007). Generalized (F, β,φ, ρ, θ)-univex functions and parametric duality models in semiinfinite discrete minmax fractional...
    • Zalmai, G. J,Zhang, Q. (2007). Global nonparametric sufficient optimality conditions for semiinfinite discrete minmax fractional programming...
    • Zhang, J,Mond, B. (1996). Second order b-invexity and duality in mathematical programming. Utilitas Math. 50. 19-31
    • Zhang, J,Mond, B. (1997). Second order duality for multiobjective nonlinear programming involving generalized convexity. Proceedings of the...
    • Zeidler, E. (1985). Nonlinear Functional Analysis and its Applications III. Springer-Verlag. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno