Ir al contenido

Documat


Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces

  • Sunny Chauhan [2] ; B. D Pant [3] ; Mohammad Imdad [1]
    1. [1] Aligarh Muslim University

      Aligarh Muslim University

      India

    2. [2] R.H. Government Postgraduate College
    3. [3] Government Degree College
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 15, Nº. 3, 2013, págs. 31-44
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462013000300004
  • Enlaces
  • Resumen
    • español

      El objetivo de este trabajo es señalar una falacia en la demostración del Teorema 1 contenido en un articulo reciente de Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] probado en un espacio-PM No-Arquimedeano Menger usando nociones de continuidad subcompatible y sub secuencial. Mostramos que el resultado de Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] puede recuperarse de dos maneras. Además, establecemos algunos ejemplos ilustrativos que muestran la validez de los resultados principales. Nuestro resultado mejora una gran cantidad de teoremas de punto fijo importantes existentes en la literatura.

    • English

      The object of this work is to point out a fallacy in the proof of Theorem 1 contained in the recent paper of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] proved in Non-Archimedean Menger PM-space by using the notions of sub-compatibility and sub-sequential continuity. We show that the results of Khan et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] an be recovered in two ways. Further, we establish some illustrative examples to show the validity of the main results. Our results improve a multitude of relevant fixed point theorems of the existing literature.

  • Referencias bibliográficas
    • Al-Thagafi, M.A,Shahzad, N. (2008). Generalized I-nonexpansive selfmaps and invariant approximations. Acta Math. Sin. (Engl. Ser.). 24. 867-876
    • Bouhadjera, H,Godet-Thobie, C. Common fixed theorems for pairs of subcompatible maps.
    • Bouhadjera, H,Godet-Thobie, C. Common fixed theorems for pairs of subcompatible maps.
    • Chang, S.S. (1990). Fixed point theorems for single-valued and multi-valued mappings in Non- Archimedean Menger probabilistic metric spaces....
    • Chauhan, S,Kadelburg, Z,Dalal, S. (2013). A common fixed point theorem in metric space under general contractive condition. J. Appl. Math....
    • Chauhan, S,Pant, B.D,Kumar, S,Tomar, A. (2013). A common fixed point theorem in Non-Archimedean Menger PM-space. Analele Universităţii Oradea...
    • Chauhan, S,Radenović, S,Imdad, M,Vetro, C. (2013). Some integral type fixed point theorems in Non-Archimedean Menger PM-Spa es with common...
    • Cho, Y.J,Ha, K.S,Chang, S.S. (1997). Common fixed point theorems for compatible mappings of type (A) in Non-Archimedean Menger PM-spaces....
    • Choudhury, B.S,Kutukcu, S,Das, K. (2012). On fixed points in Non-Archimedean Menger PM- spaces. Kochi J. Math. 7. 41-50
    • Dimri, R.C,Pant, B.D. (1991). Fixed point theorems in Non-Archimedean Menger spaces. Kyungpook Math. J. 31. 89-95
    • Doric, D,Kadelburg, Z,Radenović, S. (2012). A note on occasionally weakly compatible mappings and common fixed point. Fixed Point Theory....
    • Gopal, D,Imdad, M. (2011). Some new common fixed point theorems in fuzzy metric spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 57. 303-316
    • Hadžić, O. (1980). A note on IstratescuŠs fixed point theorem in Non-Archimedean Menger spaces. Bull. Math. Soc. Sci. Math. Rep. Soc. Roum....
    • Imdad, M,Ali, J,Tanveer, M. (2011). Remarks on some recent metrical fixed point theorems. Appl. Math. Lett. 24. 1165-1169
    • Imdad, M,Gopal, D,Vetro, C. (2012). An addendum to: A common fixed point theorem in intuitionistic fuzzy metric space using subcompatible...
    • Istrătescu, I. (1975). On some fixed point theorems with applications to the non-Archimedean Menger spaces. Atti Accad. Naz. Lincei Rend....
    • Istrătescu, I. (1978). Fixed point theorems for some classes of contraction mappings on Non-Archimedean probablistic metri space. Publ. Math....
    • Istrătescu, I,Babescu, G. (1979). On the completion on Non-Archimedean probabilistic metri spaces. 17. Seminar de spatii metrice probabiliste,...
    • Istrătescu, I,Crivat, N. (1974). On some classes of Non-Archimedean probabilistic metric spaces. 12. Seminar de spatii metrice probabiliste,...
    • Istrătescu, I,Palea, G. (1974). On Non-Archimedean probabilistic metric spaces. An. Univ. Timişoara Ser. Şti. Mat. 12. 115-118
    • Jungck, G,Rhoades, B.E. (1998). Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29. 227-238
    • Khan, M.A. (2011). Common fixed point theorems in Non-Archimedean Menger PM-spaces. Int. Math. Forum. 6. 1993-2000
    • Khan, M.A,Sumitra, A. (2009). common fixed point theorem in Non-Archimedean Menger PM- space. Novi Sad J. Math. 39. 81-87
    • Khan, M.A,Sumitra. (2010). Common fixed point theorems in Non-Archimedean Menger PM- space. JP J. Fixed Point Theory Appl. 5. 1-13
    • Khan, Sumitra, M.A,Kumar, R. (2012). Sub-compatible and and sub-sequential continuous maps in Non-Archimedean Menger PM-space. Jordan J. Math....
    • Kutukcu, S,Sharma, S. (2009). A common fixed point theorem in Non-Archimedean Menger PM- spaces. Demonstratio Math. 42. 837-849
    • Pant, R.P. (1998). Common fixed points of four mappings. Bull. Cal. Math. So. 90. 281-286
    • Pant, R.P,Bisht, R.K. (2012). Common fixed point theorems under a new continuity condition. Ann. Univ. Ferrara Sez. VII Sci. Mat. 58. 127-141
    • Rao, K.P.R,Ramudu, E.T. (2006). Common fixed point theorem for four mappings in Non- Archimedean Menger PM-spaces. Filomat. 20. 107-113
    • Rouzkard, F,Imdad, M,Nashine, H.K. (2012). New common fixed point theorems and invariant approximation in convex metric spaces. Bull. Belg....
    • Schweizer, B,Sklar, A. (1960). Statistical metric spaces. Pacific J. Math. 10. 313-334
    • Sehgal, V.M,Bharucha-Reid, A.T. (1972). Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory. 6. 97-102
    • Singh, S.L,Pant, B.D. (1985). Common fixed points of weakly commuting mappings on Non-Archimedean Menger PM-spaces. Vikram J. Math. 6. 27-31
    • Singh, S.L,Pant, B.D,Chauhan, S. (2012). Fixed point theorems in Non-Archimedean Menger PM-spaces. J. Nonlinear Anal. Optim. Theory Appl....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno