Ir al contenido

Documat


Submanifolds of a (k,μ)-Contact Manifold

  • M.S Siddesha [1] ; C.S Bagewadi [1]
    1. [1] Kuvempu University

      Kuvempu University

      India

  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 18, Nº. 1, 2016, págs. 59-68
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462016000100005
  • Enlaces
  • Resumen
    • español

      El objeto del presente artículo es estudiar subvariedades de variedades (k,μ)-contacto. Encontramos las condiciones necesarias y suficientes para que subvariedades de variedades (k,μ)-contacto sean invariantes y anti-invariantes. También examinamos la integrabilidad de las distribuciones involucradas en la definición de subvariedades CR de variedades (k,μ)-contacto.

    • English

      The object of the present paper is to study submanifolds of (k,μ)-contact manifolds. We find the necessary and sufficient conditions for a submanifolds of (k,μ)-contact manifolds to be invariant and anti-invariant. Also, we examine the integrability of the distributions involved in the definition of CR-submanifolds of (k,μ)-contact manifolds.

  • Referencias bibliográficas
    • Avijit Sarkar, Md,Showkat, Ali,Dipankar, Biswas. (2013). On submanifolds of (k,μ)-contact metric manifolds. Dhaka Univ. J. Sci. 61. 93-96
    • Avik, De. (2011). A note on invariant submanifolds of (k,μ)-contact manifolds. Ukranian Mathematical J. 62. 1803-1809
    • Blair, D.E. (1976). Contact manifolds in Riemannian geometry. Lecture notes in Math. 509.
    • Blair, D.E,Koufogiorgos, T,Papantoniou, B. J. (1995). Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91. 189-214
    • Blair, D.E,Ogiue, K. (1975). Geometry of integral submanifolds of a contact distribution. Illinois J. Math. 91. 269-276
    • Benjancu, A. (1986). Geometry of CR-submanifolds. D. Reidel Publ. C0. Holland.
    • Chen, B.Y. Riemannian submanifolds: a survey.
    • Chen, B.Y,Verheyen, P. (1983). Totally umbilical submanifolds of Kaehler manifolds. Bull. Math. Soc. Belg. 35. 27-44
    • Andnan Al-Aqeel, U.C. De,Shaikh, A.A. (2005). Submanifolds of a lorentzian para-Sasakian manifold. Bull. of Malays. Math. Sci. Soc. 28. 223-227
    • Endo, H. (1990). Invariant submanifolds in contact metric manifolds. Proc. Estonian Acad. Sci. Phys. Math. 39. 1-8
    • Kon, M. (1973). Invariant submanifolds of normal contact metric manifolds. Kodai Math. Sem. Rep. 27. 330-336
    • Kon, M. (1976). Invariant submanifolds in Sasakian manifolds. Math. Ann. 219. 277-290
    • Montano, Di Terlizzi, B.C,Mani Tripathi, Mukut. (2008). Invariant submanifolds of contact (k,μ)- manifolds. Glasgow Math J. 50. 499-507
    • Siddesha, M.S,Bagewadi, C.S. (2016). On slant submanifolds of (k,μ)-contact manifold. Differential Geometry- Dynamical Systems. 18. 123-131
    • Siddesha, M.S,Bagewadi, C.S. On some classes of invariant submanifolds (k,μ)-contact manifold. Journal of Informatics and Mathematical Sciences....
    • Tripathi, M.M,Sasahara, T,Kim, J.S. (2005). On invariant submanifolds of contact metric manifolds. Tsukuba J. Math. 29. 495-510
    • Vrancken, L. (1988). Locally symmetric submanifolds of the nearly Kaehler S6. Algebras Groups Geom. 5. 369-394
    • Yano, K,Ishihara, S. (1971). Submanifolds with parallel mean curvature vector. J. Differential Geometry. 6. 95-118
    • Yano, K,Kon, M. (1983). CR-submanifolds of Kaehlerian and Sasakian manifolds. Birkhauser. Boston-Basel.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno