Ir al contenido

Documat


Optimality of constants in power-weighted Birman-Hardy-Rellich-Type inequalities with logarithmic refinements

  • Autores: Fritz Gesztesy, Isaac Michael, Michael M. H. Pang
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 1, 2022, págs. 115-165
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462022000100115
  • Enlaces
  • Resumen
    • español

      RESUMEN El objetivo principal de este artículo es establecer la optimalidad (i.e. la precisión) de las constantes A(m, α) y B(m, α), m ∈ ℕ, α ∈ ℝ, de la forma en las desigualdades integrales de tipo Birman-Hardy-Rellich pesadas por potencias con términos de refinamiento logarítmicos recientemente demostradas en [41], es decir, Acá los logaritmos iterados están dados por y las exponenciales iteradas están definidas por Más aún, probamos la secuencia análoga de desigualdades en el intervalo exterior (r,∞) para f ∈ C ∞ 0 ((r,∞)), r ∈ (0, ∞), y una vez más probamos la optimalidad de las constantes involucradas.

    • English

      ABSTRACT The principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants A(m, α) and B(m, α), m ∈ ℕ, α ∈ ℝ, of the form in the power-weighted Birman-Hardy-Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, Here the iterated logarithms are given by and the iterated exponentials are defined via Moreover, we prove the analogous sequence of inequalities on the exterior interval (r,∞) for f ∈ C ∞ 0 ((r,∞)), r ∈ (0, ∞), and once again prove optimality of the constants involved.

  • Referencias bibliográficas
    • Adimurthi,Chaudhuri, N.,Ramaswamy, M.. (2002). An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc.. 130. 489-505
    • Adimurthi,Esteban, M. J.. (2005). An improved Hardy-Sobolev inequality in W1,p and its application to Schrödinger operators. Nonlinear Differential...
    • Adimurthi,Filippas, S.,Tertikas, A.. (2009). On the best constant of Hardy-Sobolev inequalities. Nonlinear Anal.. 70. 2826
    • Adimurthi,Grossi, M.,Santra, S.. (2006). Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem. J. Funct. Anal.....
    • Adimurthi,Sandeep, K.. (2002). Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc....
    • Adimurthi,Santra, S.. (2009). Generalized Hardy-Rellich inequalities in critical dimension and its applications. Commun. Contemp. Math.. 11....
    • Sekar, A.. (2006). Role of the fundamental solution in Hardy-Sobolev-type inequalities. Proc. Roy. Soc. Edinburgh Sect. A. 136. 1111
    • Allegretto, W.. (1976). Nonoscillation theory of elliptic equations of order 2n. Pacific J. Math.. 64. 1-16
    • Alvino, A.,Volpicelli, R.,Volzone, B.. (2010). On Hardy inequalities with a remainder term. Ric. Mat.. 59. 265
    • Ando, H.,Horiuchi, T.. (2012). Missing terms in the weighted Hardy-Sobolev inequalities and its application. Kyoto J. Math.. 52. 759
    • Arendt, W.,Goldstein, G. R.,Goldstein, J. A.. (2006). Recent Advances in differential equations and mathematical physics. Amer. Math. Soc.....
    • Avkhadiev, F. G.. (2017). The generalized Davies problem for polyharmonic operators. Sib. Math. J.. 58. 932
    • Balinsky, A. A.,Evans, W. D.. (2011). Spectral analysis of relativistic operators. Imperial College Press. London.
    • Balinsky, A. A.,Evans, W. D.,Lewis, R. T.. (2015). The analysis and geometry of Hardy’s inequality. Springer. Cham.
    • Barbatis, G.. (2007). Best constants for higher-order Rellich inequalities in Lp(Ω). Math Z.. 255. 877
    • Barbatis, G.,Filippas, S.,Tertikas, A.. (2003). Series expansion for Lp Hardy inequalities. Indiana Univ. Math. J.. 52. 171
    • Barbatis, G.,Filippas, S.,Tertikas, A.. (2018). Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary. J. Math....
    • Bennett, D. M.. (1989). An extension of Rellich’s inequality. Proc. Amer. Math. Soc.. 106. 987
    • Birman, M. Š.. (1966). On the spectrum of singular boundary-value problems. Amer. Math. Soc. Transl., Ser. 2. 53. 23-80
    • Brezis, H.,Marcus, M.. (1997). Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci.. 25. 217
    • Caldiroli, P.,Musina, R.. (2012). Rellich inequalities with weights. Calc. Var. Partial Differential Equations. 45. 147
    • Chisholm, R. S.,Everitt, W. N.,Littlejohn, L. L.. (1999). An integral operator inequality with applications. J. Inequal. Appl.. 3. 245
    • Cowan, C.. (2010). Optimal Hardy inequalities for general elliptic operators with improvements. Commun. Pure Appl. Anal.. 9. 109
    • Davies, E. B.. (1995). Spectral theory and differential operators. Cambridge University Press. Cambridge.
    • Davies, E. B.,Hinz, A. M.. (1998). Explicit constants for Rellich inequalities in Lp(Ω). Math. Z.. 227. 511
    • Detalla, A.,Horiuchi, T.,Ando, H.. (2004). Missing terms in Hardy-Sobolev inequalities and its application. Far East J. Math. Sci.. 14. 333
    • Detalla, A.,Horiuchi, T.,Ando, H.. (2004). Missing terms in Hardy-Sobolev inequalities. Proc. Japan Acad. Ser. A Math. Sci.. 80. 160
    • Detalla, A.,Horiuchi, T.,Ando, H.. (2005). Sharp remainder terms of Hardy-Sobolev inequalities. Math. J. Ibaraki Univ.. 37. 39-52
    • Detalla, A.,Horiuchi, T.,Ando, H.. (2012). Sharp remainder terms of the Rellich inequality and its application. Bull. Malays. Math. Sci. Soc.....
    • Dimitrov, D. K.,Gadjev, I.,Nikolov, G.,Uluchev, R.. (2021). Hardy’s inequalities in finite dimensional Hilbert spaces. Proc. Amer. Math. Soc.....
    • Dubinskiĭ, Y. A.. (2009). Hardy inequalities with exceptional parameter values and applications. Dokl. Math.. 80. 558
    • Dubinskiĭ, Y. A.. (2010). A Hardy-type inequality and its applications. Proc. Steklov Inst. Math.. 269. 106
    • Dubinskiĭ, Y. A.. (2014). Bilateral scales of Hardy inequalities and their applications to some problems of mathematical physics. J. Math....
    • Nguyen, T. D.,Lam-Hoang, N.,Nguyen, A. T.. (2019). Hardy-Rellich identities with Bessel pairs. Arch. Math.. 113. 95-112
    • Nguyen, T. D.,Lam-Hoang, N.,Nguyen, A. T.. (2020). Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations....
    • Filippas, S.,Tertikas, A.. (2008). Corrigendum to: “Optimizing improved Hardy inequalities”. J. Funct. Anal.. 255.
    • Gazzola, F.,Grunau, H.-C.,Mitidieri, E.. (2004). Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc.. 356....
    • Gesztesy, F.. (1984). On non-degenerate ground states for Schrödinger operators. Rep. Math. Phys.. 20. 93-109
    • Gesztesy, F.,Littlejohn, L. L.. (2018). Nonlinear partial differential equations, mathematical physics, and stochastic analysis. A Volume...
    • Gesztesy, F.,Littlejohn, L. L.,Michael, I.,Pang, M. M. H.. (2019). Radial and logarithmic refinements of Hardy’s inequality. St. Petersburg...
    • Gesztesy, F.,Littlejohn, L. L.,Michael, I.,Pang, M. M. H.. (2022). A sequence of weighted Birman-Hardy-Rellich inequalities with logarithmic...
    • Gesztesy, F.,Littlejohn, L. L.,Michael, I.,Wellman, R.. (2018). On Birman’s sequence of Hardy-Rellich-type inequalities. J. Differential Equations....
    • Gesztesy, F.,Ünal, M.. (1998). Perturbative oscillation criteria and Hardy-type inequalities. Math. Nachr.,. 189. 121
    • Gkikas, K. T.,Psaradakis, G.. Optimal non-homogeneous improvements for the series expansion of Hardy’s inequality. arXiv.
    • Glazman, I. M.. (1966). Direct methods of qualitative spectral analysis of singular differential operators. Daniel Davey & Co., Inc.....
    • Ghoussoub, N.,Moradifam, A.. (2008). On the best possible remaining term in the Hardy inequality. Proc. Natl. Acad. Sci. USA. 105. 13746
    • Ghoussoub, N.,Moradifam, A.. (2011). Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann.. 349. 1-57
    • Ghoussoub, N.,Moradifam, A.. (2013). Functional inequalities: new perspectives and new applications. Amer. Math. Soc.. Providence, RI.
    • Ruiz Goldstein, G.,Goldstein, J. A.,Mininni, R. M.,Romanelli, S.. (2019). Scaling and variants of Hardy’s inequality. Proc. Amer. Math. Soc.....
    • Grillo, G.. (2003). Hardy and Rellich-type inequalities for metrics defined by vector fields. Potential Anal.. 18. 187-217
    • Hardy, G. H.. (1925). Notes on some points in the integral calculus LX: An inequality between integrals. Messenger Math.. 54. 150
    • Hardy, G. H.,Littlewood, J. E.,Pólya, G.. (1988). Inequalities. Cambridge University Press. Cambridge.
    • Hartman, P.. (1948). On the linear logarithmic-exponential differential equation of the second-order. Amer. J. Math.. 70. 764
    • Hartman, P.. (2002). Ordinary Differential Equations. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA.
    • Herbst, I. W.. (1977). Spectral theory of the operator (p2 + m2)1/2 − Ze2/r. Comm. Math. Phys.. 53. 285
    • Hinz, A. M.. (2004). Spectral theory of Schrödinger operators. Amer. Math. Soc.. Providence, RI.
    • Ioku, N.,Ishiwata, M.. (2015). A scale invariant form of a critical Hardy inequality. Int. Math. Res. Not. IMRN. 8830
    • Kalf, H.,Schmincke, U.-W.,Walter, J.,Wüst, R.. (1975). Spectral theory and differential equations. Springer. Berlin.
    • Kovalenko, V. F.,Perel’muter, M. A.,Semenov, Y. A.. (1981). Schrödinger operators with L1/2w (ℝℓ)-potentials. J. Math. Phys.. 22. 1033
    • Kufner, A.. (1985). Weighted Sobolev spaces. John Wiley & Sons, Inc.. New York.
    • Kufner, A.,Maligranda, L.,Persson, L.-E.. (2007). The Hardy inequality: About its history and some related results. Vydavatelský servis. Plzeň....
    • Kufner, A.,Persson, L.-E.,Samko, N.. (2017). Weighted inequalities of Hardy type. 2. World Scientific Publishing Co.. Hackensack, NJ.
    • Kufner, A.,Wannebo, A.. (1992). General inequalities 6. Birkhäuser. Basel.
    • Landau, E.. (1926). A note on a theorem concerning series of positive terms: extract from a letter of Prof. E. Landau to Prof. I. Schur. J....
    • Machihara, S.,Ozawa, T.,Wadade, H.. (2013). Hardy type inequalities on balls. Tohoku Math. J.. 65. 321
    • Machihara, S.,Ozawa, T.,Wadade, H.. (2015). Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space. J. Inequal....
    • Machihara, S.,Ozawa, T.,Wadade, H.. (2019). Asymptotic analysis for nonlinear dispersive and wave equations. Math. Soc. Japan. Tokyo.
    • Machihara, S.,Ozawa, T.,Wadade, H.. (2017). Remarks on the Rellich inequality. Math. Z.. 286. 1367
    • Metafune, G.,Sobajima, M.,Spina, C.. (2015). Weighted Calderón-Zygmund and Rellich inequalities in Lp. Math. Ann.. 361. 313
    • Mitidieri, È.. (2000). A simple approach to Hardy inequalities. Math. Notes. 67. 479
    • Moradifam, A.. (2012). Optimal weighted Hardy-Rellich inequalities on H2 ∩ H10. J. London Math. Soc.. 85. 22-40
    • Muckenhoupt, B.. (1972). Hardy’s inequality with weights. Studia Math.. 44. 31
    • Musina, R.. (2009). A note on the paper “Optimizing improved Hardy inequalities” by S. Filippas and A. Tertikas. J. Funct. Anal.. 256. 2741
    • Musina, R.. (2014). Weighted Sobolev spaces of radially symmetric functions. Ann. Mat. Pura Appl.. 193. 1629
    • Musina, R.. (2014). Optimal Rellich-Sobolev constants and their extremals. Differential Integral Equations. 27. 579-600
    • Ngŏ, Q. A.,Nguyen, V. H.. (2020). A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic...
    • Noussair, E. S.,Yoshida, N.. (1976). Nonoscillation criteria for elliptic equations of order 2m. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis....
    • Okazawa, N.,Tamura, H.,Yokota, T.. (2011). Square Laplacian perturbed by inverse fourth-power potential. I: self-adjointness (real case)....
    • Opic, B.,Kufner, A.. (1990). Hardy-type inequalities. Longman Scientific & Technical. Harlow.
    • Persson, L.-E.,Samko, S. G.. (2015). A note on the best constants in some Hardy inequalities. J. Math. Inequal.. 9. 437
    • Rellich, F.. (1969). Perturbation theory of eigenvalue problems. Gordon and Breach Science Publishers, Inc.. New York-London-Paris.
    • Ruzhansky, M.,Suragan, D.. (2017). Hardy and Rellich inequalities, identities and sharp remainders on homogeneous groups. Adv. Math.. 317....
    • Ruzhansky, M.,Yessirkegenov, N.. (2020). Factorizations and Hardy-Rellich inequalities on stratified groups. J. Spectr. Theory. 10. 1361
    • Sano, M.. (2019). Extremal functions of generalized critical Hardy inequalities. J. Differential Equations. 267. 2594
    • Sano, M.,Takahashi, F.. (2016). Sublinear eigenvalue problems with singular weights related to the critical Hardy inequality. Electron. J....
    • Schmincke, U.-W.. (1972). Essential selfadjointness of a Schrödinger operator with strongly singular potential. Math. Z.. 124. 47-50
    • Simon, B.. (1983). Hardy and Rellich inequalities in nonintegral dimension. J. Operator Theory. 9. 143
    • Solomyak, M.. (1994). A remark on the Hardy inequalities. Integral Equations Operator Theory. 19. 120
    • Takahashi, F.. (2015). A simple proof of Hardy’s inequality in a limiting case. Arch. Math.. 104. 77-82
    • Tertikas, A.,Zographopoulos, N. B.. (2007). Best constants in the Hardy-Rellich inequalities and related improvements. Adv. Math.. 209. 407
    • Yafaev, D.. (1999). Sharp constants in the Hardy-Rellich inequalities. J. Funct. Anal.. 168. 121
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno