Ir al contenido

Documat


The topological degree methods for the fractional p(·)-Laplacian problems with discontinuous nonlinearities

  • Autores: Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 24, Nº. 1, 2022, págs. 63-82
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462022000100063
  • Enlaces
  • Resumen
    • español

      RESUMEN En este artículo, usamos el grado topológico basado en la ecuación abstracta de Hammerstein para investigar la existencia de soluciones débiles para una clase de problemas elípticos de valor en la frontera de Dirichlet que involucran el operador p(x)-Laplaciano fraccional con no linealidades discontinuas. El marco funcional apropiado para estos problemas es el espacio de Sobolev fraccional con exponente variable.

    • English

      ABSTRACT In this article, we use the topological degree based on the abstract Hammerstein equation to investigate the existence of weak solutions for a class of elliptic Dirichlet boundary value problems involving the fractional p(x)-Laplacian operator with discontinuous nonlinearities. The appropriate functional framework for this problems is the fractional Sobolev space with variable exponent.

  • Referencias bibliográficas
    • Abbassi, A.,Allalou, C.,Kassidi, A.. (2020). Existence of weak solutions for nonlinear p-elliptic problem by topological degree. Nonlinear...
    • Abbassi, A.,Allalou, C.,Kassidi, A.. (2020). Topological degree methods for a Neumann problem governed by nonlinear elliptic equation. Moroccan...
    • Allalou, C.,Abbassi, A.,Kassidi, A.. (2021). The discontinuous nonlinear Dirichlet boundary value problem with p-Laplacian. Azerb. J. Math.....
    • Ambrosetti, A.,Rabinowitz, P. H.. (1973). Dual variational methods in critical point theory and applications. J. Functional Analysis. 14....
    • Arcoya, D.,Calahorrano, M.. (1994). Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl.. 187. 1059
    • Autuori, G.,Pucci, P.. (2013). Elliptic problems involving the fractional Laplacian in ℝN. J. Differential Equations. 255. 2340
    • Azroul, E.,Benkirane, A.,Shimi, M.. (2019). Eigenvalue problems involving the fractional p(x)- Laplacian operator. Adv. Oper. Theory. 4. 539
    • Bahrouni, A.,Rădulescu, V. D.. (2018). On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent....
    • Bahrouni, A.,Rădulescu, V. D,Winkert, P.. (2020). Robin fractional problems with symmetric variable growth. J. Math. Phys.. 61.
    • Bahrouni, A.,Ho, K.. (2021). Remarks on eigenvalue problems for fractional p(・)-Laplacian. Asymptot. Anal.. 123. 139
    • Barletta, G.,Chinnì, A.,O’Regan, D.. (2016). Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities....
    • Berkovits, J.,Tienari, M.. (1996). Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems...
    • Brezis, H.,Lieb, E. H.. (1983). A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc.....
    • Browder, F. E.. (1983). Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc.. 9. 1-39
    • Cabré, X.,Sire, Y.. (2014). Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann....
    • Chang, K. C.. (1980). The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math.. 33....
    • Chen, Y.,Levine, S.,Rao, M.. (2006). Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math.. 66. 1383
    • O’Regan, D.,Cho, Y. J.,Chen, Y.-Q.. (2006). Topological degree theory and applications. Chapman & Hall/CRC. Boca Raton.
    • Choi, E. B.,Kim, J.-M.,Kim, Y.-H.. (2018). Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary...
    • Diening, L.,Harjulehto, P.,Hästö, P.,Růžička, M.. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer. Heidelberg.
    • Santos, G. G. dos,Figueiredo, G. M.,Nascimento, R. G.. (2020). Existence and behavior of positive solution for a problem with discontinuous...
    • Fan, X.,Zhao, D.. (2001). On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl.. 263. 424
    • Ait Hammou, M.,Azroul, E.,Lahmi, B.. (2019). Topological degree methods for a strongly nonlinear p(x)-elliptic problem. Rev. Colombiana Mat.....
    • Heidarkhani, S.,Gharehgazlouei, F.. (2017). Multiplicity of elliptic equations involving the p-Laplacian with discontinuous nonlinearities....
    • Ho, K.,Kim, Y.-H.. (2019). A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(・)-Laplacian....
    • Kaufmann, U.,Rossi, J. D.,Vidal, R.. (2017). Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J....
    • Kim, I. H.,Kim, Y.-H.. (2015). Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with...
    • Kim, I. H.,Bae, J.-H.,Kim, Y.-H.. (2020). Existence of a weak solution for discontinuous elliptic problems involving the fractional p(・)-Laplacian....
    • Kim, I.-S.. (2017). Topological degree and applications to elliptic problems with discontinuous nonlinearity. J. Nonlinear Sci. Appl.. 10....
    • Kováčik, O.,Rákosník, J.. (1991). On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J.. 41. 592-618
    • Leray, J.,Schauder, J.. (1934). Topologie et équations fonctionnelles. Ann. Sci. École Norm. 51. 45-78
    • Lions, J.-L.. (1969). Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars. Paris.
    • Metzler, R.,Klafter, J.. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.. 339.
    • Di Nezza, E.,Palatucci, G.,Valdinoci, E.. (2012). Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math.. 136. 521
    • Servadei, R.,Valdinoci, E.. (2012). Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389. 887
    • Simon, J.. (1978). Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977). Springer. Berlin.
    • Skrypnik, I. V.. (1994). Methods for analysis of nonlinear elliptic boundary value problems. American Mathematical Society. Providence, Rhode...
    • Skrypnik, I. V.. (1973). Nonlinear elliptic equations of higher order. Gamoqeneb. Math. Inst. Sem. Moḫsen. Anotacie. 51
    • Teng, K.,Wu, X.. (2008). Multiplicity results for semilinear resonant elliptic problems with discontinuous nonlinearities. Nonlinear Anal.....
    • Teng, K.. (2010). Multiple solutions for semilinear resonant elliptic problems with discontinuous nonlinearities via nonsmooth double linking...
    • Wang, C.,Huang, Y.. (2010). Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights....
    • Yuan, Z.,Yu, J.. (2020). Existence of solutions for Dirichlet elliptic problems with discontinuous nonlinearity. Nonlinear Anal.. 197.
    • Zhang, C.,Zhang, X.. (2020). Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data. Nonlinear Anal.. 190.
    • Zhao, D.,Qiang, W. J.,Fan, X. L.. (1997). On generalized Orlicz spaces Lp(x)(Ω). J. Gansu Sci.. 9. 1-7
    • Zeidler, E.. (1990). Nonlinear functional analysis and its applications II/B, nonlinear monotone operators. Springer. New York.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno