Ir al contenido

Documat


Métodos de grado topológico para un problema p(x)-elíptico fuertemente no lineal

  • Mustapha Ait Hammou [1] ; Azroul, Elhoussine [1] ; Lahmi, Badr [1]
    1. [1] Universidad Sidi Mohamed Ibn Abdellah - Facultad de Ciencias Dhar El Mahraz Fes - Departamento de Matemáticas
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 53, Nº. 1, 2019, págs. 27-39
  • Idioma: español
  • DOI: 10.15446/recolma.v53n1.81036
  • Títulos paralelos:
    • Topological degree methods for a Strongly nonlinear p(x)-elliptic problem
  • Enlaces
  • Resumen
    • español

      Este artículo está dedicado a estudiar la existencia de solucionesdébiles para el problema p(x)-elíptico fuertemente no linealNuestro enfoque técnico se basa en el reciente grado topologico de Berkovits.

    • English

      This article is devoted to study the existence of weak solutions forthe strongly nonlinear p(x)-elliptic problemOur technical approach is based on the recent Berkovits topological degree.

  • Referencias bibliográficas
    • R. Alsaedi, Perturbed subcritical Dirichlet problems with variable exponents, Elec. J. of Dif. Equ. 2016 (2016), no. 295, 1-12.
    • J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J.Differ.Equ. 234 (2007), 289-310.
    • G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the p(x)-laplacian, Math.Nachr. 284 (2011), no. 5-6, 639-652.
    • G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the p(x)-laplacian, Matematiche (Catania) 66 (2011), no. 1, 105-113.
    • G. Bonanno and A. Chinnì, Existence results of infinitely many solutions for p(x)-laplacian elliptic Dirichlet problems, Complex Var. Elliptic...
    • K.C. Chang, Critical point theory and applications, Shanghai Scientific and Technology Press, Shanghai, 1986 (english).
    • O. Kovácik and J. Rákosník, On spaces Lp(x) and W1, p(x), Czechoslovak Math. J. 41 (1991), 592-618.
    • G. Dai, Infinitely many non-negative solutions for a Dirichlet problem involving p(x)-laplacian, Nonlinear Anal. 71 (2009), 5840-5849.
    • X. L. Fan and X. Han, Existence and multiplicity of solutions for p(x)- laplacian equations in Rn, Nonlinear Anal. 59 (2004), 173-188.
    • X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
    • X.L. Fan and D. Zhao, On the spaces Lp(x) and Wm,p(x), J. Math. Anal. Appl. 263 (2001), 424-446.
    • P.S. Ilias, Existence and multiplicity of solutions of a p(x)-laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl. 52 (2007),...
    • D. Zhao, W.J. Qiang and X.L. Fan, On generalized Orlicz spaces Lp(x), J. Gansu Sci. 9 (1996), no. 2, 1-7.
    • M. Ruzicka, Electrorheological fuids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000....
    • Harjulehto P, Hästö P, Koskenoja, Varonen S, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values,...
    • S.G. Samko, Density of C1 0 (Rn) in the generalized Sobolev spaces Wm,p(x)(Rn), Dokl Akad Nauk 369 (1999), no. 4, 451-454.
    • E. Zeidler, Nonlinear functional analysis and its applications, II/B: Nonlinear monotone Operators, Springer, New York, 1990 (English).
    • X. Fan , Q. Zhang and D. Zhaoa, Eigenvalues of p(x)-laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317.
    • V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), 33-66.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno