Ir al contenido

Documat


Basic asymptotic estimates for powers of Wallis’ ratios

  • Autores: Vito Lampret
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 23, Nº. 3, 2021, págs. 357-368
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462021000300357
  • Enlaces
  • Resumen
    • español

      RESUMEN Para cualquier a ∈ ℝ, para todo n ∈ ℕ, y para el n- ésimo cociente de Wallis de la aproximación se estima como También se estima la mejora .

    • English

      ABSTRACT For any a ∈ ℝ, for every n ∈ ℕ, and for n-th Wallis’ ratio of the approximation is estimated as The improvement is also studied.

  • Referencias bibliográficas
    • Alzer, H.. (2002). Inequalities for the constants of Landau and Lebesgue. J. Comput. Appl. Math.. 139. 215
    • Burić, T.,Elezović, N.. (2011). Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions. J. Comput. Appl. Math.....
    • Burić, T.,Elezović, N.. (2012). New asymptotic expansions of the quotient of gamma functions. Integral Transforms and Spec. Funct.. 23. 355
    • Chen, C.-P.,Qi, F.. (2005). The best bounds in Wallis’ inequality. Proc. Amer. Math. Soc.. 133. 397-401
    • Cristea, V. G.. (2015). A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality. Studia Univ....
    • Dumitrescu, S.. (2015). Estimates for the ratio of gamma functions using higher order roots. Stud. Univ. Babeş-Bolyai Math. 60. 173
    • Elezović, N.,Lin, L.,Vukšić, L.. (2013). Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio. J....
    • Elezović, N.. (2015). Asymptotic expansions of gamma and related functions, binomial coefficient, inequalities and means. J. Math. Inequal.....
    • Friedmann, T.,Hagen, C. R.. (2015). Quantum mechanical derivation of the Wallis formula for π. J. Math. Phys.. 56. 3
    • Guo, S.,Xu, J.-G.,Qi, F.. (2013). Some exact constants for the approximation of the quantity in the Wallis’ formula. J. Inequal. Appl.. 2013....
    • Guo, S.,Feng, Q.,Bi, Y.-Q.,Luo, Q.-M.. (2015). A sharp two-sided inequality for bounding the Wallis ratio. J. Inequal. Appl.. 2015. 5
    • (2020). Quantum mechanical derivation of the Wallis formula for Pi.
    • Hirschhorn, M. D.. (2005). Comments on the paper: “Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product...
    • Kazarinoff, D. K.. (1956). On Wallis’ formula. Edinburgh Math. Notes. 19-21
    • Koshy, T.. (2009). Catalan numbers with applications. Oxford University Press. New York.
    • Laforgia, A.,Natalini, P.. (2012). On the asymptotic expansion of a ratio of gamma functions. J. Math. Anal. Appl.. 389. 833
    • Lampret, V.. (2012). An asymptotic approximation of Wallis’ sequence. Cent. Eur. J. Math.. 10. 775
    • Lampret, V.. (2017). Wallis’ sequence estimated accurately using an alternating series. J. Number Theory. 172. 256
    • Lampret, V.. (2019). A simple asymptotic estimate of Wallis’ ratio using Stirling’s factorial formula. Bull. Malays. Math. Sci. Soc.. 42....
    • Lampret, V.. (2019). The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series. Cubo. 21. 51-64
    • Landau, L. D.,Lifshitz, E. M.. (1986). Course of Theoretical Physics: Mechanics. 3. Butterworth-Heinemann. Oxford.
    • Mortici, C.. (2010). Sharp inequalities and complete monotonicity for the Wallis ratio. Bull. Belg. Math. Math. Soc. Simon Stevin. 17. 929
    • Mortici, C.. (2010). A new method for establishing and proving new bounds for the Wallis ratio. Math. Inequal. Appl.. 13. 803
    • Mortici, C.. (2011). Refinements of Gurland’s formula for pi. Comput. Math. Appl.. 62. 2616
    • Mortici, C.. (2011). Sharp bounds of the Landau constants. Math. Comp.. 80. 1011
    • Mortici, C.. (2012). Completely monotone functions and the Wallis ratio. Appl. Math. Lett.. 25. 717
    • Mortici, C.,Cristea, V. G.. (2016). Estimates for Wallis’ ratio and related functions. Indian J. Pure Appl. Math.. 47. 437
    • Qi, F.,Mortici, C.. (2015). Some best approximation formulas and the inequalities for the Wallis ratio. Appl. Math. Comput.. 253. 363
    • Qi, F.. (2018). An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Probl. Anal. Issues Anal.. 7. 104
    • Slavić, D. V.. (1975). On inequalities for Γ(x + 1)/Γ(x + 1/2). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.,. 17-20
    • Sun, J.-S.,Qu, C.-M.. (2007). Alternative proof of the best bounds of Wallis’ inequality. Commun. Math. Anal.. 2. 23
    • Wolfram, S.. (2009). Mathematica, version 7.0. Wolfram Research, Inc.
    • Zhang, X.-M.,Xu, T. Q.,Situ, L. B.. (2007). Geometric convexity of a function involving gamma function and application to inequality theory....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno