Ir al contenido

Documat


The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series

  • Autores: Vito Lampret
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 2, 2019, págs. 51-64
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462019000200051
  • Enlaces
  • Resumen
    • español

      RESUMEN Para el perímetro P(a, b) de una elipse con semiejes a ≥ b ≥ 0, se construye una sucesión Q n (a, b) tal que el error relativo de la aproximación P(a, b) ≈ Qn (a, b) satisface las siguientes desigualdades válidas para

    • English

      ABSTRACT For the perimeter P(a, b) of an ellipse with the semi-axes a ≥ b ≥ 0 a sequence Q n (a, b) is constructed such that the relative error of the approximation P(a, b) ≈ Q n (a, b) satisfies the following inequalities true for

  • Referencias bibliográficas
    • Adlaj, S.. (2012). An eloquent formula for the perimeter of an ellipse. Notices of the AMS. 59. 1094
    • Almkvist, G.,Berndt, B.. (1988). Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary. Amer. Math. Monthly....
    • Barnard, B. W.,Pearce, K.,Schovanec, L.. (2001). Inequalities for the perimeter of an Ellipse. J. Math. Anal. Appl.. 260. 295-306
    • Chen, C.-P.. (2005). Best upper and lower bounds in Wallis’ inequality. Journal of the Indonesian Mathematical Society. 11. 137
    • Chen, C.-P.. (2005). The best bounds in Wallis’ inequality. Proc. Amer.Math. Soc.. 133. 397-401
    • Chen, C.-P.. (2005). Completely monotonic function associated with the gamma functions and proof of Wallis’ inequality. Tamkang Journal of...
    • Cristea, V. G.. (2015). A direct approach for proving Wallis’ ratio estimates and an improvement of Zhang-Xu-Situ inequality. Studia Univ....
    • Deng, J.-E.,Ban, T.,Chen, C.-P.. (2015). Sharp inequalities and asymptotic expansion associated with the Wallis sequence. J. Inequal. Appl.....
    • Dumitrescu, S.. (2015). Estimates for the ratio of gamma functions using higher order roots. Studia Univ. Babes, -Bolyai Math. 60. 173
    • Guo, S.,Xu, J.-G.,Qi, F.. (2013). Some exact constants for the approximation of the quantity in the Wallis’ formula. J. Inequal. Appl.. 2013....
    • Guo, S.,Feng, Q.,Bi, Y.-Q.,Luo, Q.-M.. (2015). A sharp two-sided inequality for bounding the Wallis ratio. J. Inequal. Appl.. 2015.
    • Guo, B.-N.,Qi, Feng. (2015). On the Wallis formula. International Journal of Analysis and Applications. 8. 30
    • Ivory, J.. (1796). A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula (a2...
    • Laforgia, A.,Natalini, P.. (2012). On the asymptotic expansion of a ratio of gamma functions. J. Math. Anal. Appl.. 389. 833
    • Lampret, V.. (2001). The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations. Math. Mag.. 74. 109
    • Lampret, V.. (2017). Wallis’ Sequence Estimated Accurately Using an Alternating Series. J. Number. Theory.. 172. 256
    • Lampret, V.. (2018). A Simple Asymptotic Estimate of Wallis Ratio Using Stirlings Factorial Formula. Bull. Malays. Math. Sci. Soc..
    • Linderholm, C. E.,Segal, A. C.. (1995). An Overlooked Series for the Elliptic Perimeter. Mathematics Magazine. 68. 216
    • Mortici, C.. (2010). Sharp inequalities and complete monotonicity for the Wallis ratio. Bull. Belg. Math. Math. Soc. Simon Stevin. 17. 929
    • Mortici, C.. (2010). New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Modelling. 52. 425
    • Mortici, C.. (2010). A new method for establishing and proving new bounds for the Wallis ratio. Math. Inequal. Appl.. 13. 803
    • Mortici, C.. (2012). Completely monotone functions and the Wallis ratio. Appl. Math. Lett.. 25. 717
    • Mortici, C.,Cristea, V. G.. (2016). Estimates for Wallis’ ratio and related functions. Indian J. Pure Appl. Math.. 47. 437
    • Maclaurin, C. A.. (1742). A treatise of fluctions in two journals. T. W. and T. Ruddimans. Edinburgh.
    • Qi, F.,Mortici, C.. (2015). Some best approximation formulas and the inequalities for the Wallis ratio. Appl. Math. Comput.. 253. 363
    • Qi, F.. (2018). An improper integral, the beta function, the Wallis ratio, and the Catalan numbers. Problemy Analiza. 7. 104
    • Sun, J.-S.,Qu, C.-M.. (2007). Alternative proof of the best bounds of Wallis’ inequality. Commun. Math. Anal.. 2. 23
    • Villarino, M. B.. A Direct Proof of Landen’s Transformation.
    • Villarino, M. B.. (2014). Ramanujan’s inverse elliptic arc approximation. Ramanujan J.. 34. 157
    • Wolfram, S.. (1988). Mathematica. Wolfram Research, Inc.,.
    • Zhang, X.-M.,Xu, T. Q.,Situ, L. B.. (2007). Geometric convexity of a function involving gamma function and application to inequality theory....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno