Ir al contenido

Documat


Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation

  • Autores: Bapurao C. Dhage
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 22, Nº. 3, 2020, págs. 325-350
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462020000300325
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, se establecen resultados de existencia y de atractividad global para una ecuación no lineal cuadrática mixta e híbrida fraccionaria integrodiferencial linealmente perturbada de segundo tipo involucrando la derivada fraccional de Caputo en intervalos no acotados de la recta real con argumentos mixtos de anticipación y retardo. El teorema de punto fijo híbrido de Dhage es usado en el análisis de nuestro problema no lineal fraccionario integrodiferencial. También se obtiene un resultado de positividad bajo ciertas condiciones naturales usuales. Nuestras hipótesis y afirmaciones también se explican con la ayuda de una realización natural.

    • English

      Abstract In this paper, we establish the existence and a global attractivity results for a nonlinear mixed quadratic and linearly perturbed hybrid fractional integrodifferential equation of second type involving the Caputo fractional derivative on unbounded intervals of real line with the mixed arguments of anticipations and retardation. The hybrid fixed point theorem of Dhage is used in the analysis of our nonlinear fractional integrodifferential problem. A positivity result is also obtained under certain usual natural conditions. Our hypotheses and claims have also been explained with the help of a natural realization.

  • Referencias bibliográficas
    • Cichón, M.,Salem, H. A. H.. (2019). On the solutions of Caputo-Hadamard Pettis-type fractional differential equations. Rev. R. Acad. Cienc....
    • Cichón, M.,Salem, H. A. H.. (2020). On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems....
    • Banas, J.,Dhage, B. C.. (2008). Global asymptotic stability of solutions of a functional integral equations. Nonlinear Analysis. 69. 1945
    • Burton, T. A.,Furumochi, T.. (2001). A note on stability by Schauder’s theorem. Funkcialaj Ekvacioj. 44. 73-82
    • Deimling, K.. (1985). Nonlinear Functional Analysis. Springer Verlag. Berlin.
    • Dhage, B. C.. (2003). Local fixed point theory for the product of two operators in Banach algebras. Math. Sci Res. Journal. 9. 373
    • Dhage, B. C.. (2004). Local fixed point theory involving three operators in Banach algebras. Topological Methods in Nonlinear Anal.. 24. 377
    • Dhage, B. C.. (2004). A fixed point theorem in Banach algebras involving three operators with applications. Kyungpook Math. J.. 44. 145
    • Dhage, B. C.. (2004). A nonlinear alternative in Banach algebras with applications to functional differential equations. Nonlinear Funct....
    • Dhage, B. C.. (2006). A nonlinear alternative with applications to nonlinear perturbed differential equations. Nonlinear Studies. 13. 343
    • Dhage, B. C.. (2008). Asymptotic stability of nonlinear functional integral equations via measures of noncompactness. Comm. Appl. Nonlinear...
    • Dhage, B. C.. (2009). Local asymptotic attractivity for nonlinear quadratic functional integral equations. Nonlinear Analysis. 70. 1912
    • Dhage, B. C.. (2009). Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem....
    • Dhage, B. C.. (2010). Attractivity and positivity results for nonlinear functional integral equations via measures of noncompactness. Differ....
    • Dhage, B. C.. (2010). Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations. Differ....
    • Dhage, B. C.. (2010). Some characterizations of nonlinear first order differential equations on unbounded intervals. Differ. Equ. Appl.. 2....
    • Dhage, B. C.. (2018). Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications. Nonlinear Studies....
    • Dhage, B. C.. (2019). Existence and attractivity theorems for nonlinear first order hybrid differential equations with anticipation and retardation....
    • Dhage, B. C.. (2021). Global asymptotic attractivity and stability theorems for nonlinear Caputo fractional differential equations. J. Frac....
    • Dhage, B. C.. (2020). Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation....
    • Dhage, B. C.,Dhage, S. B.,Sarkate, S. D.. (2014). Attractivity and existence results for hybrid differential equations with anticipation and...
    • Dhage, B. C.,O’Regan, D.. (2009). A fixed point theorem in Banach algebras with applications to functional integral equations. Funct. Diff....
    • Granas, A.,Dugundji, J.. (2003). Fixed Point Theory. Springer Verlag. New York.
    • Granas, A.,Guenther, R. B.,Lee, J. W.. (1991). Some general existence principles for Carathèodory theory of nonlinear differential equations....
    • Hilfer, R.. (2000). Applications of Fractional Calculus in Physics. World Scientific. Singapore.
    • Hu, X.,Yan, J.. (2006). The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J. Math. Anal. Appl....
    • Kilbas, A. A.,Srivastava, H.M.,Trujillo, J.J.. (2006). Theory and Applications of Fractional Differential Equations. Elsevier. Amsterdam,...
    • Podlubny, I.. (1999). Fractional Differential Equations. Academic Press. San Diego, Calif, USA.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno