Ir al contenido

Documat


On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds

  • Autores: M. I. Belishev, A. F. Vakulenko
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 1, 2019, págs. 1-19
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462019000100001
  • Enlaces
  • Resumen
    • español

      Resumen Sea Ω una variedad Riemanniana 3-dimensional suave con borde, orientada y compacta. Un campo cuaterniónico es un par q = {α, u} dado por una función α y un campo de vectores u en Ω. Un campo q es armónico si α, u son continuos en Ω y ∇α = rotu, div u = 0 vale en todo Ω. El espacio (Ω) de campos armónicos es un subespacio del álgebra de Banach (Ω) de campos cuaterniónicos continuos con la multiplicación punto a punto qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. Probamos un teorema de tipo Stone-Weierstrass: la subálgebra ∨(Ω) generada por campos armónicos es densa en 𝒞(Ω). Se entregan también algunos resultados acerca de 2-jets de funciones armónicas y los conjuntos de unicidad campos armónicos.

    • English

      Abstract Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space (Ω) of harmonic fields is a subspace of the Banach algebra 𝒞 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.

  • Referencias bibliográficas
    • Abel, M.,Jarosz., K.. (2004). Noncommutative uniform algebras. Studia Mathematica. 162. 213
    • Belishev, M. I.. (2003). The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J. Math. Anal.. 35. 172
    • Belishev, M. I.. (2005). Some remarks on impedance tomography problem for 3d-manifolds. CUBO A Mathematical Journal. 7. 43-53
    • Belishev, M. I.. (2006). Encyclopedia of Mathematical Physics. Elsevier. Oxford.
    • Belishev, M. I.. (2008). Sobolev Spaces in Mathematics III. Applications in Mathematical Physics. Springer.
    • Belishev, M. I.. (2015). Algebras in reconstruction of manifolds. Spectral Theory and Partial Differential Equations. Contemporary Mathematics,...
    • Belishev, M. I.. Boundary Control Method.. Encyclopedia of Applied and Computational Mathematics. 1. 142
    • Belishev, M. I.. (2016). On algebras of three-dimensional quaternionic harmonic fields. Zapiski Nauch. Semin. POMI. 451. 14-28
    • Belishev, M. I.. (2017). Boundary control and tomography of Riemannian manifolds (BC-method).. Russian Mathematical Surveys. 72. 581-644
    • Belishev, M. I.,Sharafutdinov, V. A.. (2008). Dirichlet to Neumann operator on differential forms. Bulletin de Sciences Mathématiques. 132....
    • Belishev, M. I.,Vakulenko, A. F.. (2019). On algebras of harmonic quaternion fields in R 3. Algebra i Analiz. 31. 1-17
    • Bers, L.,John, F.,Schechter, M.. (1964). Partial Differential Equations.
    • Jarosz, K.. (2007). Function representation of a noncommutative uniform algebra. Proceedings of the AMS. 136. 605
    • Holladay, J.. (1957). A note on the Stone-Weierstrass theorem for quaternions.. Proc. Amer. Math. Soc.. 8.
    • Kulkarni, S. H.,Limaye, B. V.. (1992). Real Function Algebras, Monographs and Textbooks in Pure and Applied Math.. Marcel Dekker, Inc.. New...
    • Leis, R.. (1972). Initial boundary value problems in mathematical physics. Teubner. Stuttgart.
    • Miranda, C.. (1955). Equazioni alle derivate parziali di tipo ellittico.. Springer-Verlag. Berlin.
    • Mitrea, M.,Taylor, M.. (1999). Boundary Layer Methods for Lipschitz Domains in Riemannian Manifolds. Journal of Functional Analysis. 163....
    • Naimark, M. A.. (1970). Normed Rings. WN Publishing. Gronnongen, The Netherlands.
    • Narasimhan, R.. (1968). Analysis on real and complex manifolds. Masson and Cie, editier. Paris.
    • Schwarz, G.. (1995). Hodge decomposition - a method for solving boundary value problems.. Springer-Verlag. Berlin.
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno