Ir al contenido

Documat


Totally umbilical proper slant submanifolds of para-Kenmotsu manifold

  • Autores: M.S. Siddesha, C.S. Bagewadi, D. Nirmala
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 2, 2019, págs. 41-49
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462019000200041
  • Enlaces
  • Resumen
    • español

      RESUMEN En este paper estudiamos subvariedades inclinadas en variedades para-Kenmotsu. Demostramos que una subvariedad inclinada en una variedad para-Kenmotsu totalmente umbilical es invariante, o anti-invariante, o una subvariedad de dimensión 1, o el vector de curvatura media H de la subvariedad vive en el fibrado normal invariante.

    • English

      ABSTRACT In this paper, we study slant submanifolds of a para-Kenmotsu manifold. We prove that totally umbilical slant submanifold of a para-Kenmotsu manifold is either invariant or anti-invariant or dimension of submanifold is 1 or the mean curvature vector H of the submanifold lies in the invariant normal subbundle.

  • Referencias bibliográficas
    • Blaga, A. M.. (2017). Invariant, anti-invariant and slant submanifolds of a para-Kenmotsu manifold. BSG Proceedings. 24. 19-28
    • Blaga, A. M.. (2015). Eta-Ricci solitons on para-Kenmotsu manifolds. Balkan Journal of Geometry and Its Applications. 20. 1-13
    • Cabrerizo, J.L.,Carriazo, A.,Fernandez, L.M.. (2000). Slant submanifolds in Sasakian manifolds. Glasgow Math. J.. 42. 125
    • Chen, B.Y.. (1990). Slant immersions. Bull. Aust. Math. Soc.. 41. 135
    • Chen, B.Y.. (1990). Geometry of slant submanifolds. Katholieke Universiteit Leuven.
    • Dacko, P.,Olszak, Z.. (2007). On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys.. 57. 561
    • Gupta, R. S.,Khursheed Haider, S. M.,Shahid, M. H.. (2004). Slant submanifolds of a Kenmotsu manifold. Radovi Matematicki. 12. 205
    • Gupta, R. S.,Pandey, P. K.. (2008). Structure on a slant submanifold of a Kenmotsu manifold. Differential Geometry - Dynamical Systems. 10....
    • Ivanov, S.,Vassilev, D.,Zamkovoy, S.. (2010). Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata. 144. 79-100
    • Kenmotsu, K.. (1972). A class of almost contact Riemannian manifolds. Tohoku Math. J.. 24. 93-103
    • Khan, M. A.,Uddin, S.,Singh, K.. (2011). A classification on totally umbilical proper slant and hemi-slant submanifolds of a nearly trans-Sasakian...
    • Lotta, A.. (1996). Slant submanifolds in contact geometry. Bull. Math. Soc. Roum.. 39. 183
    • Lotta, A.. (1998). Three dimensional slant submanifolds of K-contact manifolds. Balkan J. Geom. Appl.. 3. 37-51
    • Siddesha, M. S.,Bagewadi, C. S.. (2016). On slant submanifolds of (k, μ)-contact manifold. Differential Geometry-Dynamical Systems. 18. 123
    • Siddesha, M. S.,C. S.. (2017). Semi-slant submanifolds of (k, μ)-contact manifold. Commun.Fac. Sci. Univ. Ser. A1 Math. Stat.. 67. 116
    • Sinha, B. B.,Sai Prasad, K. L.. (1995). A class of almost para contact metric manifolds. Bull. Cal. Math. Soc.. 87. 307
    • Welyczko, J.. (2013). Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math..
    • Zamkovoy, S.. (2008). Canonical connections on paracontact manifolds. Ann. Global Anal. Geom.. 36. 37-60
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno