Ir al contenido

Documat


Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations

  • Vikram Singh [1] ; Dwijendra N Pandey [1]
    1. [1] Indian Institute of Technology Roorkee Department of Mathematics
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 19, Nº. 1, 2017, págs. 89-110
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462017000100006
  • Enlaces
  • Resumen
    • español

      En este artículo estudiamos la existencia y unicidad de soluciones pseudo casi periódicas con pesos promedio cuadrado a trozos para una clase de ecuaciones diferenciales estocásticas impulsivas de orden fraccional. Las herramientas de trabajo están basadas en la técnica de punto fijo, operadores de potencia fraccional y análisis estocástico; los métodos y teoría están adaptados a partir de sistemas fraccionales deterministas. Adicionalmente, damos un ejemplo para ilustrar la teoría.

    • English

      In this paper, we deal with the existence and uniqueness of piecewise square meanweighted pseudo almost periodic solutions for a class of fractional order stochastic impulsive differential equations. The working tools are based on fixed point technique, fractional power operators and stochastic analysis; methods and theory are adopted from deterministic fractional systems. In addition, an example is given to illustrate the theory.

  • Referencias bibliográficas
    • Abbas, S,Benchohra, M,N Guérékata, G.M. (2012). Topics in fractional differential equations, Developments in Mathematics. Springer. New York....
    • Bahaj, M,Sidki, O. (2002). Almost periodic solutions of semilinear equations with analytic semigroups in Banach spaces. Elect. J. Diff. Equn....
    • Baleanu, D,Diethelm, K,Scalas, E,Trujillo, J. J. (2012). Fractional calculus models and numerical methods in: series on complexity, nonlinearity...
    • Bezandry, P,Diagana, T. (2007). Existence of almost periodic solutions to some stochastic differential equations. Applicable Anal. 7. 819-827
    • Chérif, F. (2014). Pseudo almost periodic solutions of impulsive differential equations with delay. differ. Equ. Dyn. Syst. 22. 73-91
    • Chang, Y. K,Ma, R,Zhao, Z. H. (2013). Almost periodic solutions to a stochastic differential equation in Hilbert spaces. Results in Math....
    • Da Prato, G,Zabczyk, J. (1992). Stochastic equations in infinite dimensions, encyclopedia of mathematics and its applications. Cambridge University...
    • Diagana, T. (2006). Weighted pseudo almost periodic functions and applications. C. R. Acad. Sci. Paris, Ser. I. 343. 643-646
    • Diagana, T. (2008). Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations. Nonlinear Anal....
    • El-Borai, M. M,Debbouche, A. (2009). Almost periodic solutions of some nonlinear fractional differential equations. Int. J. Contemp. Math....
    • Guendouzi, T,Bousmaha, L. (2014). Almost periodic solutions for impulsive fractional stochastic evolution equations. Int. J. Anal. appl. 6....
    • Kafash, B,Lalehzari, R,Delavarkhalafi, A,Mahmoudi, E. (2014). Application of Stochastic Differential System in Chemical Reactions via Simulation....
    • Liu, J,Zhang, C. (2013). Existence and stability of almost periodic solutions to impulsive stochastic differential equations. Cubo. 15. 77-96
    • Liu, J. W,Zhang, C. Y. (2013). Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential...
    • Machado, J. A. T. (1997). Analysis and design of fractional order disital control system. Syst. Anal. Model. Simul. 27. 107-122
    • Miller, K. S,Ross, B. (1993). An Introduction to the fractional calculus and differential equations. John Wiley. New York.
    • Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations. Springer-Verlage. New York.
    • Podlubny, I. (1999). Fractional differential equations. Academic Press. New York.
    • Sakthivel, R,Revathi, P,Renc, Y. (2013). Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal....
    • Sakthivel, R,Suganya, S,Anthoni, S. M. (2012). Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl....
    • Samoilenko, A. M,Perestyuk, N. A. (1995). Impulsive differential equations. World Scientific.
    • Stamov, G.T,Alzabut, J.O. (2010). Almost periodic solutions for abstract impulsive differential equations. Nonlinear Anal. TMA. 72. 2457-2464
    • Xia, Z,Wang, D. (2015). Piecewise weighted pseudo almost periodic solutions of impulsive integro-differential equations via fractional operators....
    • Xia, Z. Pseudo almost periodic mild solution of nonautonomous impulsive integro differential equations. Mediterr. J. Math.
    • Zhang, C. Y. (1994). Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181. 62-76
    • Zhang, C. Y. (1995). Pseudo almost periodic solutions of some differential equations. II, J. Math. Anal. Appl. 192. 543-561
    • Zhinan, X. (2017). Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces. Czechoslovak...
    • Zhou, Y,Jiao, F. (2010). Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal.: Real World Appl. 11. 4465-4475
    • Zhou, Y,Jiao, F. (2010). Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59. 1063-1077
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno