Ir al contenido

Documat


The Involution Kernel and the Dual Potential for Functions in the Walters’ Family

  • Autores: L.Y. Hataishi, A. O. Lopes
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • First, we set a suitable notation. Points in {0, 1}Z−{0} = {0, 1}N × {0, 1}N = − × +, are denoted by (y|x) = (..., y2, y1|x1, x2, ...), where (x1, x2, ...) ∈ {0, 1}N, and (y1, y2, ...) ∈ {0, 1}N. The bijective map σ (..., ˆ y2, y1|x1, x2, ...) = (..., y2, y1, x1|x2, ...) is called the bilateral shift and acts on {0, 1}Z−{0} . Given A : {0, 1}N = + → R we express A in the variable x, like A(x). In a similar way, given B : {0, 1}N = − → R we express B in the variable y, like B(y). Finally, given W : − × + → R, we express W in the variable (y|x), like W(y|x). By abuse of notation, we write A(y|x) = A(x) and B(y|x) = B(y). The probability μA denotes the equilibrium probability for A : {0, 1}N → R. Given a continuous potential A : + → R, we say that the continuous potential A∗ : − → R is the dual potential of A, if there exists a continuous W : − × + → R, such that, for all (y|x) ∈ {0, 1}Z−{0} A∗(y) = A ◦ ˆσ −1 + W ◦ ˆσ −1 − W (y|x).

      We say that W is an involution kernel for A. It is known that the function W allows to define a spectral projection in the linear space of the main eigenfunction of the Ruelle operator for A. Given A, we describe explicit expressions for W and the dual potential A∗, for A in a family of functions introduced by P. Walters. Denote by θ :

      − × + → − × + the function θ (..., y2, y1|x1, x2, ...) = (..., x2, x1|y1, y2, ...).

      We say that A is symmetric if A∗(θ (x|y)) = A(y|x) = A(x). We present conditions for A to be symmetric and to be of twist type. It is known that if A is symmetric then μA has zero entropy production.

  • Referencias bibliográficas
    • 1. Baraviera, A., Lopes, A.O., Thieullen, Ph.: A Large Deviation Principle for Gibbs states of Hölder potentials: the zero temperature case....
    • 2. Baraviera, A., Lopes, A.O., Mengue, J.K.: On the selection of subaction and measure for a subclass of Walters’s potentials. Erg. Theo....
    • 3. Baraviera, A., Leplaideur, R., Lopes, A.O.: The potential point of view for renormalization. Stoch. Dyn. 12(4), 1250005 (2012)
    • 4. Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of measures for a potential with two maxima at the zero temperature limit. SIAM J....
    • 5. Baraviera, A., Leplaideur, R., Lopes, A. O.: Ergodic optimization, zero temperature limits and the max-plus algebra, mini-course in XXIX...
    • 6. Bhattacharya, P., Majumdar, M.: Random Dynamical Systems. Cambridge Univ Press (2007)
    • 7. Bogomolny, E.B., Carioli, M.: Quantum maps of geodesic flows on surfaces of constant negative curvature, IV International Conference on...
    • 8. Cioletti, L., Lopes, A.O.: Correlation inequalities and monotonicity properties of the Ruelle operator. Stoch. Dyn. 19(6), 1950048 (2019)
    • 9. Cioletti, L., Lopes, A.O.: Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach. J. Stat. Phys....
    • 10. Cioletti, L., Lopes, A.O., Stadlbauert, M.: Ruelle operator for continuous potentials and DLR-Gibbs measures. Disc. Cont. Dyn. Syst. A...
    • 11. Cioletti, L., Melo, L., Ruviaro, L., Silva, E.A.: On the dimension of the space of harmonic functions on transitive shift spaces. Adv....
    • 12. Cioletti, L., Denker, M., Lopes, A.O., Stadlbauer, M.: Spectral properties of the Ruelle operator for product type potentials on shift...
    • 13. Cioletti, L., Hataishi, L. Y., Lopes, A. O., Stadlbauert, M.: Spectral triples on thermodynamic formalism and dixmier trace representations...
    • 14. Contreras, G., Lopes, A. O., Oliveira, E. R.: Ergodic transport theory, periodic maximizing probabilities and the twist condition, modeling,...
    • 15. Ferreira, H.H., Lopes, A.O., Oliveira, E.R.: Explicit examples in Ergodic optimization. Sao Paulo J. Math. Sci. 14, 443–489 (2020)
    • 16. Fisher, A., Lopes, A.O.: Exact bounds for the polynomial decay of correlation, 1/f noise and the central limit theorem for a non-Hölder...
    • 17. Gallavotti, G.: Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. de l’.H.P. Phys. Theor. 70(4), 429–443...
    • 18. Giulietti, P., Lopes, A.O., Pit, V.: Duality between Eigenfunctions and Eigendistributions of Ruelle and Koopman operators via an integral...
    • 19. Hataishi, L.Y.: Spectral Triples em Formalismo Termodinâmico e Kernel de Involução para potenciais Walters, Master Dissertation. Pos....
    • 20. Hofbauer, F.: Examples for the nonuniquenes of the equilibrium state. Tran. AMS 228, 133–141 (1977)
    • 21. Jiang, D.-Q., Qian, M., Qian, M.-P.: Entropy production and information gain in axiom-A systems. Commun. Math. Phys. 214, 389–409 (2000)
    • 22. Lopes, A.O.: The zeta function, non-differentiability of pressure and the critical exponent of transition. Adv. Math. 101, 133–167 (1993)
    • 23. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for onedimensional Lattice Systems with a general...
    • 24. Lopes, A.O.: A general renormalization procedure on the one-dimensional lattice and decay of correlations. Stoch. Dyn. 19(01), 1950003...
    • 25. Lopes, A.O., Mengue, J.K.: On information gain, Kullback-Liebler divergence, entropy production and the involution kernel. Disc. Cont....
    • 26. Lopes, A.O., Thieullen: Eigenfunctions of the Laplacian and associated Ruelle operator. Nonlinearity 21(10), 2239–2254 (2008)
    • 27. Lopes, A.O., Oliveira, E.R., Smania, D.: Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bull. Braz....
    • 28. Lopes, A.O., Oliveira, E.R., Thieullen, P.H.: The dual potential, the involution kernel and transport in ergodic optimization, Dynamics,...
    • 29. Lopes, A.O., Vargas, V.: Gibbs states and Gibbsian specifications on the space RN. Dyn. Syst. 35(2), 216–241 (2020)
    • 30. Lopes, A.O.: Thermodynamic formalism, maximizing probabilities and large deviations, Notes on line - UFRGS
    • 31. Lopes, A.O.: A first order level-2 phase transition in thermodynamic formalism. J. Stat. Phys. 60(3/4), 395–411 (1990)
    • 32. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)
    • 33. Mengue, J.K.: Large deviations for equilibrium measures and selection of subaction. Bull. Braz. Math. Soc. 49(1), 17–42 (2018)
    • 34. Mitra, T.: Introduction to dynamic optimization theory, optimization and chaos, Editors: M. Majumdar, T. Mitra and K. Nishimura, Studies...
    • 35. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit strucuture of hyperbolic dynamics. Asterisque 187–188, 1–268 (1990)
    • 36. Pollicott, M., Sharp, R.: Large deviations, fluctuations and shrinking intervals. Commun. Math. Phys. 290, 321–334 (2009)
    • 37. Ruelle, D.: A generalized detailed balance relation. J. Stat. Phys. 164, 463–471 (2016)
    • 38. Ruelle, D.: Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 85, 1–25 (1996)
    • 39. Souza, R.R., Vargas, V.: Existence of Gibbs states and maximizing measures on a general onedimensional lattice system with Markovian structure....
    • 40. Vargas, V.: On involution Kernels and large deviations principles on β-shifts. Discr. Contin. Dyn. Syst. 42(6), 2699–2718 (2022)
    • 41. Walters, P.: An introduction to Ergodic theory. Springer-Verlag (1982)
    • 42. Walters, P.: A natural space of functions for the Ruelle operator theorem. Erg. Theory Dyn. Syst. 27(4), 1323–1348 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno