Ir al contenido

Documat


A natural space of functions for the Ruelle operator theorem

  • Autores: Peter Walters Árbol académico
  • Localización: Ergodic theory and dynamical systems, ISSN 0143-3857, Vol. 27, Nº 4, 2007, págs. 1323-1348
  • Idioma: inglés
  • DOI: 10.1017/s0143385707000028
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study a new space, $R(X)$, of real-valued continuous functions on the space $X$ of sequences of zeros and ones. We show exactly when the Ruelle operator theorem holds for such functions. Any $g$-function in $R(X)$ has a unique $g$-measure and powers of the corresponding transfer operator converge. We also show Bow$(X,T)\neq W(X,T)$ and relate this to the existence of bounded measurable coboundaries, which are not continuous coboundaries, for the shift on the space of bi-sequences of zeros and ones.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno