Ir al contenido

Documat


Besicovitch Almost Periodic Solutions to Semilinear Evolution Dynamic Equations with Varying Delay

  • Yongkun Li [1] ; Weiwei Qi [1] ; Bing Li [2]
    1. [1] Yunnan University

      Yunnan University

      China

    2. [2] Yunnan Minzu University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we first put forward a concept of Besicovitch almost periodic functions on time scales defined by Bochner property, and study some fundamental properties of this kind of Besicovitch almost periodic functions, including the closeness to linear operations, translation invariance, composition theorem, etc. Then, as an application of our results, the existence and uniqueness of Besicovitch almost periodic solutions for a class of nonautonomous semilinear evolution dynamic equation with varying delay on time scales are established.

  • Referencias bibliográficas
    • 1. Bohr, H.: Zur theorie der fastperiodischen funktionen, I. Acta Math. 45, 29–127 (1925)
    • 2. Bohr, H.: Zur theorie der fastperiodischen funktionen, II. Acta Math. 46, 101–214 (1925)
    • 3. Bohr, H.: Zur theorie der fastperiodischen funktionen, III. Acta Math. 47, 237–281 (1926)
    • 4. Weyl, H.: Integralgleichungen und fastperiodische Funktionen. Math. Ann. 97, 338–356 (1926)
    • 5. Besicovitch, A.S.: Almost periodic functions. Dover, New York (1954)
    • 6. Corduneanu, C.: Almost periodic oscillations and waves. Springer, Heidelberg (2009)
    • 7. Andres, J., Bersani, A.M., Grande, R.F.: Hierarchy of almost periodic function spaces. Rend. Math. Ser. VII 26, 121–188 (2006)
    • 8. Fink, A.M.: Almost periodic differential equations. Springer, Heidelberg (1974)
    • 9. Stamov, G.T.: Almost periodic solutions of impulsive differential equations. Springer, Heidelberg (2012)
    • 10. Levitan, B.M., Zhikov, V.V.: Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982)
    • 11. Diagana, T.: Almost automorphic type and almost periodic type functions in abstract spaces. Springer, Heidelberg (2013)
    • 12. N’Guérékata, G.M.: Almost periodic and almost automorphic functions in abstract spaces. Springer, Heidelberg (2021)
    • 13. Kmit, I., Recke, L., Tkachenko, V.: Classical bounded and almost periodic solutions to quasilinear first-order hyperbolic systems in a...
    • 14. Sepulcre, J.M., Vidal, T.: Bohr’s equivalence relation in the space of Besicovitch almost periodic functions. Ramanujan J. 49(3), 625–639...
    • 15. Frid, H., Li, Y.: Asymptotic decay of Besicovitch almost periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations....
    • 16. Li, Y., Huang, M., Li, B.: Besicovitch almost periodic solutions for fractional-order quaternion-valued neural networks with discrete...
    • 17. Li, Y., Huang, M., Li, B.: Besicovitch almost periodic solutions of abstract semi-linear differential equations with delay. Mathematics...
    • 18. Li, Y., Huang, X.: Besicovitch almost periodic solutions to stochastic dynamic equations with delays. Qual. Theory Dyn. Syst. 21, 74 (2022)
    • 19. Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Res. Math. 18(1), 18–56 (1990)
    • 20. Bohner, M., Peterson, A.: Dynamic equations on time scales. An introduction with applications, Birkhäuser, Boston (2001)
    • 21. Li, Y., Wang, C.: Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales. Abstr. Appl....
    • 22. Li, Y., Shen, S.: Compact almost automorphic function on time scales and its application. Qual. Theory Dyn. Syst. 20, 86 (2021)
    • 23. Wu, J.: Theory and applications of partial functional differential equations. Springer, Heidelberg (1996)
    • 24. Alvarez, E., Díaz, S., Lizama, C.: Existence of (N, λ)-periodic solutions for abstract fractional difference equations. Mediterr. J. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno