Ir al contenido

Documat


Compact Almost Automorphic Function on Time Scales and Its Application

  • Li, Yongkun [1] ; Shen, Shiping [1]
    1. [1] Yunnan University

      Yunnan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00522-5
  • Enlaces
  • Resumen
    • In this paper, we first propose a concept of compact almost automorphic functions on time scales, and study some basic properties of compact almost automorphic functions on time scales, including an equivalent characterization of compact almost automorphic functions on time scales, composition theorems of compact almost automorphic functions and the completeness of the space of compact almost automorphic functions. Then, as an application of our results, we prove the existence and global exponential stability of a class of Clifford-valued recurrent neural networks with time-varying delays on time scales, and demonstrate the feasibility of our results by an example.

  • Referencias bibliográficas
    • 1. Bochner, S.: A new approach to almost periodicity. Proc. Natl. Acad. Sci. USA 48, 2039–2043 (1962)
    • 2. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)
    • 3. Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka–Volterra equations and systems. J. Math. Anal. Appl. 255(1), 260–280 (2001)
    • 4. Li, Y., Kuang, Y.: Periodic solutions in periodic state-dependent delay equations and population models. Proc. Am Math. Soc. 130(5), 1345–1353...
    • 5. Liz, E., Ruiz-Herrera, A.: Delayed population models with Allee effects and exploitation. Math. Biosci. Eng. 12(1), 83–97 (2015)
    • 6. Liz, E.: Complex dynamics of survival and extinction in simple population models with harvesting. Theor. Ecol. 3, 209–221 (2010)
    • 7. Liz, E., Ruiz-Herrera, A.: Attractivity, multistability, and bifurcation in delayed Hopfield’s model with non-monotonic feedback. J. Differ....
    • 8. Veech, W.A.: Almost automorphic functions on groups. Am. J. Math. 87, 719–751 (1965)
    • 9. Hino, Y., Murakami, S.: Almost automorphic solutions for abstract functional differential equations. J. Math. Anal. Appl. 286(2), 741–752...
    • 10. Henríquez, H.R., Lizama, C.: Compact almost automorphic solutions to integral equations with infinite delay. Nonlinear Anal. 71(12), 6029–6037...
    • 11. Andrade, B.D., Cuevas, C.: Compact almost automorphic solutions to semilinear Cauchy problems with non-dense domain. Appl. Math. Comput....
    • 12. Es-Sebbar, B.: Almost automorphic evolution equations with compact almost automorphic solutions. C. R. Math. 354(11), 1071–1077 (2016)
    • 13. Drisi, N., Es-sebbar, B., Ezzinbi, K.: Compact almost automorphic solutions for some nonlinear dissipative differential equations in Banach...
    • 14. Hernández, E.,Wu, J.H.: Existence, Uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent...
    • 15. Es-sebbar, B., Ezzinbi, K., Fatajou, S., Ziat, M.: Compact almost automorphic weak solutions for some monotone differential inclusions:...
    • 16. Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Result Math. 18(1–2), 18–56 (1990)
    • 17. Li, Y., Wang, C.: Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales. Abstr Appl Anal....
    • 18. Li, Y., Wang, C.: Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales. Adv. Differ....
    • 19. Wang, C., Li, Y.: Weighted pseudo almost automorphic functions with applications to abstract dynamic equations on time scales. Ann. Pol....
    • 20. Lizama, C., Mesquita, J.G.: Almost automorphic solutions of dynamic equations on time scales. J. Funct. Anal. 265, 2267–2311 (2013)
    • 21. Li, Y., Wang, P.: Almost periodic solution for neutral functional dynamic equations with Stepanovalmost periodic terms on time scales....
    • 22. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1(4), 350–358 (1878)
    • 23. Buchholz, S.: A theory of neural computation with Clifford algebras. Ph.D. thesis, University of Kiel, Kiel (2005)
    • 24. Buchholz, S., Sommer, G.: On Clifford neurons and Clifford multi-layer perceptrons. Neural Netw. 21(7), 925–935 (2008)
    • 25. Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Cliffords geometric algebra. Adv. Appl. Clifford Algebras 23(2), 377–404 (2013)
    • 26. Shen, S., Li, Y.: S p-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays. Neural Process....
    • 27. Li, Y., Xiang, J.: Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen–Grossberg neural...
    • 28. Li, Y., Huo, N., Li, B.: On μ-pseudo almost periodic solutions for Clifford-valued neutral type neural networks with delays in the leakage...
    • 29. Li, B., Li, Y.: Existence and global exponential stability of almost automorphic solution for Cliffordvalued high-order Hopfield neural...
    • 30. Li, Y., Wang, Y., Li, B.: The existence and global exponential stability of μ-pseudo almost periodic solutions of Clifford-valued semi-linear...
    • 31. Huo, N., Li, B., Li, Y.: Anti-periodic solutions for Clifford-valued high-order Hopfield neural networks with state-dependent and leakage...
    • 32. Li, B., Li, Y.: Existence and global exponential stability of pseudo almost periodic solution for Cliffordvalued neutral high-order Hopfield...
    • 33. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Books Limited, London (1982)
    • 34. Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, New York (2013)
    • 35. N’Guérékata, G.M.: Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces. Kluwer, New York (2001) Compact Almost...
    • 36. Li, Y., Yang, L., Wu, W.: Square-mean almost periodic solution for stochastic Hopfield neural networks with time-varying delays on timescales....
    • 37. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introuduction with Applications. Birkhäuser, Boston (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno