Ir al contenido

Documat


The Rosenzweig–MacArthur Graphical Criterion for a Predator-Prey Model with Variable Mortality Rate

  • Autores: Amina Hammoum, Tewfik Sari, Karim Yadi
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider a general modified Gause type model of predation, for which the predator mortality rate can depend on the densities of both species, prey and predator. We give a graphical criterion for the stability of positive hyperbolic equilibria, which is an extension of the well-known Rosenzweig–MacArthur graphical criterion for the case of a constant predator mortality rate. We examine the occurrence of a Poincaré– Andronov–Hopf bifurcation and give an expression for the first Lyapunov coefficient.

      Our model generalizes several models appearing in the literature. The relevance of our results, i.e. the use of the graphical criterion and the expression for the first Lyapunov coefficient, is tested on these models. The global behavior of the system is illustrated by numerical simulations which confirm the local properties of the models near the equilibria.

  • Referencias bibliográficas
    • 1. Arditi, R., Ginzburg, L.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989). https://doi.org/10.1016/s0022-5193(89)80211-5
    • 2. Bazykin, A. D.: Volterra’s system and the Michaelis-Menten equation. Problems in mathematical genetics. USSR Academy of Science, Novosibirsk,...
    • 3. Bazykin, A.D.: Nonlinear dynamics of interacting populations. World Scientific (1998). https://doi. org/10.1142/2284
    • 4. Belabbas, M., Ouahab, A., Souna, F.: Rich dynamics in a stochastic predator-prey model with protection zone for the prey and multiplicative...
    • 5. Beroual, N., Sari, T.: A predator-prey system with Holling-type functional response. Proc. Am. Math. Soc. 148, 5127–5140 (2020). https://doi.org/10.1090/proc/15166
    • 6. Cavani, M., Farkas, M.: Bifurcations in a predator-prey model with memory and diffusion I: AndronovHopf bifurcation. Acta Math. Hungar....
    • 7. Das, B.K., Sahoo, D., Samanta, G.P.: Impact of fear in a delay-induced predator-prey system with intraspecific competition within predator...
    • 8. Duque, C., Lizana, M.: Partial characterization of the global dynamic of a predator-prey model with non constant mortality rate. Differ....
    • 9. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology, Volume 57 of Monographs and textbooks in pure and applied mathematics,...
    • 10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (2002)....
    • 11. Hainzl, J.: Stability and Hopf Bifurcation in a Predator-Prey System with Several Parameters. SIAM J. Appl. Math. 48, 170–190 (1988)....
    • 12. Hammoum, A., Sari, T., Yadi, K.: Rosenzweig-MacArthur model with variable disappearance rate. In: CARI’2022. Proceedings of the 16th African...
    • 13. Hsu, S.B.: On global stability of a predator-prey system. Math. Biosci. 39, 1–10 (1978). https://doi. org/10.1016/0025-5564(78)90025-1
    • 14. Izhikevich, E.M.: Dynamical systems in neuroscience. MIT Press (2007). https://doi.org/10.7551/ mitpress/2526.001.0001
    • 15. Jiang, H., Wang, L.: Analysis of steady state for variable-territory model with limited self-limitation. Acta Appl. Math.D 148, 103–120...
    • 16. Jiang, X., She, Z., Ruan, S.: Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional...
    • 17. Kolmogorov, A.: Sulla teoria di Volterra della lotta per lesistenza. Gi. Inst. Ital. Attuari 7, 74–80 (1936)
    • 18. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001). https:// doi.org/10.1017/CBO9780511608520
    • 19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Applied Mathematical Sciences (AMS, volume 112), Springer New York, NY (2004)....
    • 20. Lobry, C.: The consumer-resource relationship: mathematical modeling. Wiley-ISTE (2018). https:// doi.org/10.1002/9781119544029
    • 21. Lu, M., Huang, J.: Global analysis in Bazykin’s model with Holling II functional response and predator competition. J. Differ. Equ. 280,...
    • 22. Lin, X., Xu, Y., Gao, D., Fan, G.: Bifurcation and overexploitation in Rosenzweig- MacArthur model. Discrete Continuous Dyn. Syst. Ser....
    • 23. MAPLE [Software], Version 13.0, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario (2009). https://fr.maplesoft.com/
    • 24. Minter, E.J., Fenton, A., Cooper, J.,Montagnes, D.J.: Prey-dependent mortality rate: a critical parameter in microbial models. Microb....
    • 25. Mondal, S., Samanta, G.: A comparison study of predator-prey system in deterministic and stochastic environments influenced by fear and...
    • 26. Mondal, S., Samanta, G.P.: Dynamics of a delayed predator-prey interaction incorporating nonlinear prey refuge under the influence of...
    • 27. Mondal, S., Samanta, G.P.: Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and...
    • 28. Mondal, S., Samanta, G. P, Nieto, J.J.: Dynamics of a predator-prey population in the presence of resource subsidy under the influence...
    • 29. Munteanu, F.: A study of the Jacobi stability of the Rosenzweig-MacArthur predator-prey system through the KCC geometric theory. Symmetry...
    • 30. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interaction. Am. Nat. 47, 209–223...
    • 31. Sahoo, D., Samanta, G., De la Sen, M.: Impact of fear and habitat complexity in a predator-prey system with two different shaped functional...
    • 32. Sahoo, D., Samanta, G.P.: Comparison between two tritrophic food chain models with multiple delays and anti-predation effect. Int. J....
    • 33. Samanta, G.: Deterministic, Stochastic and Thermodynamic Modelling of some Interacting Species. Book-Springer Nature Singapore Pte Ltd....
    • 34. Seo, G., Wolkowicz, G.S.K.: Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional...
    • 35. Souna, F., Belabbas, M., Menacer, Y.: Complex pattern formations induced by the presence of crossdiffusion in a generalized predator-prey...
    • 36. Souna, F., Lakmeche, A., Djilali, S.: The effect of the defensive strategy taken by the prey on predatorprey interaction. J. Appl. Math....
    • 37. Strohm, S., Tyson, R.: The effect of habitat fragmentation on cyclic population dynamics: a numerical study. Bull. Math. Biol. 71, 1323–1348...
    • 38. Turchin, P., Batzli, G.O.: Availability of food and the population dynamics of arvicoline rodents. Ecology, 82, 1521–1534 (2001). https://doi.org/10.1890/0012-9658(2001)082[1521:aofatp]2.0.co;2
    • 39. Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Atti Reale Accad. Nazionale dei Lincei 6,...
    • 40. Wang, S., Yu, H.: Stability and bifurcation analysis of the Bazykin’s predator-prey ecosystem with Holling type II functional response....
    • 41. Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math. 48, 592–606 (1988). https://doi.org/10.1137/0148033
    • 42. Yang, R., Jin, D., Wang, W.: A diffusive predator-prey model with generalist predator and time delay. AIMS Math. 7, 4574–4591 (2022)....
    • 43. Yang, R., Nie, C., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity....
    • 44. Yang, R., Song, Q., An, Y.: Spatiotemporal dynamics in a predator-prey model with functional response increasing in both predator and...
    • 45. Yang, R.,Wang, F., Jin, D.: Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey...
    • 46. Yang, R., Zhao, X., An, Y.: Dynamical analysis of a delayed diffusive predator-prey model with additional food provided and anti-predator...
    • 47. Zhou, H., Tang, B., Zhu, H., Tang, S.: Bifurcation and dynamic analyses of non-monotonic predatorprey system with constant releasing rate...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno