Ir al contenido

Documat


Bifurcation and Dynamic Analyses of Non-monotonic Predator–Prey System with Constant Releasing Rate of Predators

  • Zhou, Hao [1] ; Tang, Biao [2] ; Zhu, Huaiping [3] ; Tang, Sanyi [1]
    1. [1] Shaanxi Normal University

      Shaanxi Normal University

      China

    2. [2] Xi’an Jiaotong University
    3. [3] York University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we systematical study the rich dynamics and complex bifurcations of a non-monotonic predator–prey system with a constant releasing rate for the predator. We prove that the system can have at most three positive equilibria, and can undergo a sequence of bifurcations, including transcritical, saddle-node, Hopf, degenerate Hopf, double limit cycle, saddle-node homoclinic bifurcation (or homoclinic loop with a saddle-node), cusp bifurcation of codimension 2, and Bogdanov–Takens bifurcation of codimension 2 and 3. And the system can generate very rich dynamics, such as the existence of a semi-stable limit cycle, multiple coexistent periodic orbits, homoclinic loops, etc. Moreover, our results show that the dynamical behaviors highly rely on the constant releasing rate of predators and the initial conditions. That is, there exists a critical value of the constant releasing rate of predators such that (i) when the constant releasing rate is greater than the critical value, the prey goes to extinction for all admissible initial populations of both species; (ii) when the constant releasing rate is less than the critical value, the prey can always coexist with the predator. Numerical simulations are presented to verify the main results.

  • Referencias bibliográficas
    • 1. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response....
    • 2. Li, C., Zhu, H.: Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)
    • 3. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic funcational response. SIAM J. Appl. Math. 61(4), 1445–1472...
    • 4. Xiao, D., Zhu, H.: Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response. SIAM J. Appl....
    • 5. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM...
    • 6. Freedman, H.I., Wolkowicz, G.S.: Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6),...
    • 7. Watson, A., Tener, J.S.: Muskoxen in Canada: a biological and taxonomic review. J. Appl. Ecol. 4(1), 257 (1965)
    • 8. Holmes, J.C., Bethel, W.M.: Modification of intermediate host behaviour by parasites. Zool. J. Linn. Soc. 51(Supplement 1), 123–149 (1972)
    • 9. Lenteren, V.J.C.: Integrated pest management in protected crops. Integr. Pest. Manag. D 17(3), 270–275 (1987)
    • 10. Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences....
    • 11. Zhu, H., Ding, Q., Wang, F., Wang, H.: Dynamics on tumor immunotherapy model with periodic impulsive infusion. Int. J. Biomath. 9(5),...
    • 12. Qin, W., Tan, X., Tosato, M., Liu, X.: Threshold control strategy for a non-smooth Filippov ecosystem with group defense. Appl. Math....
    • 13. Wang, A., Xiao, Y., Zhu, H.: Dynamics of a Filippov epidemic model with limited hospital beds. Math. Biosci. Eng. 15(3), 739–764 (2018)
    • 14. Zhou, H., Wang, X., Tang, S.: Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate. Math. Biosci....
    • 15. Kuznetsov, Y.A., Rinalai, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos. 13(8), 2157–2188...
    • 16. Tang, S., Pang, W., Cheke, R.A., Wu, J.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. N. Y. 322, 1–70...
    • 17. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)
    • 18. Eftimie, R., Bramson, J.L., Earn, D.J.D.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical...
    • 19. Li, C., Li, J., Ma, Z.: Codimension 3 B-T bifurcation in an epidemic model with nonlinear incidence. Discrete Contin. Dyn. Syst. Ser....
    • 20. Shan, C., Zhu, H.: Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Equ. 257(5),...
    • 21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)
    • 22. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)
    • 23. Chen, L., Jing, Z.: The existence and uniqueness of the limit cycle of the differential equations in the predator-prey system. Chin. Sci....
    • 24. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)
    • 25. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Science Press, Beijing (1992)
    • 26. Lamontagne, Y., Coutu, C., Rousseau, C.: Bifurcation analysis of a predator-prey system with generalised Holling type III functional response....
    • 27. Xiang, C., Huang, J., Ruan, S., Xiao, D.: Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response....
    • 28. Mei, Z.: Liapunov-Schmidt Method. Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, Berlin (2000)
    • 29. Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov-Takens bifurcation of codimension 3 in a predatorprey model with constant-yield predator...
    • 30. Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3-parameter families of vector fields on the plane, unfolding a singularity with...
    • 31. Cai, L., Chen, G., Xiao, D.: Multiparametric bifurcations of an epidemiological model with strong Allee effect. J. Math. Biol. 67(2),...
    • 32. Dumortier, F., Roussarie, R., Sotomayor, S., Zoladek, H.: Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno