Ir al contenido

Documat


A new (3+1)-dimensional Sakovich equation in nonlinearwave motion: Painlevé integrability, multiple solitons andsoliton molecules

  • Yu-Lan Ma [1] ; Abdul-Majid Wazwaz [2] ; Bang-Qing Li [1]
    1. [1] Beijing Technology and Business University

      Beijing Technology and Business University

      China

    2. [2] Saint Xavier University

      Saint Xavier University

      City of Chicago, Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we develop a new (3+1)-dimensional Sakovich equation to describenonlinear wave propagation. We use the truncation expansion method to confirm the Painlevé integrability of the newly established equation. Then, its general soliton solution and multiple-soliton solutions are constructed. We also verify that the equationpossesses soliton molecules. A few of interesting features for the equation are discovered.

  • Referencias bibliográficas
    • 1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev.Lett.110, 064105 (2013)
    • 2. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn.74, 239–241(2005)
    • 3. Hirota, H.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys.Rev. Lett.27, 1192–1194 (1971)
    • 4. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differentialequations. Math. Comput. Simulat.43,...
    • 5. Bekir, A.: Painleve test for some (2+1)-dimensional nonlinear equations. Chaos Solitons Fractals32,449–455 (2007)
    • 6. Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys.47,112701 (2006)
    • 7. Ma, W.X., Xu, X.X.: Positive and negative hierarchies of integrable lattice models associated with aHamiltonian pair. Int. J. Theor. Phys.43,...
    • 8. Sakovich, S.: A New Painleve-integrable equation possessing KdV-type. Nonlinear Phenom. ComplexSys.22, 299–304 (2019)
    • 9. Wazwaz, A.M.: A new (3+1)-dimensional Painleve-integrable Sakovich equation: multiple solitonsolutions. Int. J. Numer. Methods Heat...
    • 10. Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons ofthe complex Swift-Hohenberg model...
    • 11. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons viathe conservation-law deep-learning...
    • 12. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractionalAblowitz-Ladik model. Optik228,...
    • 13. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractivecrystals. Nonlinear Dyn.102, 1733–1741...
    • 14. Wen, X.K., Feng, R., Lin, J.H., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric...
    • 15. Chen, Y.X.: Combined optical soliton solutions of a (1+1)-dimensional time fractional resonant cubic-quintic nonlinear Schrödinger...
    • 16. Galindo, C., Monserrat, F., Pérez-Callejo, E.: Algebraic integrability of planar polynomial vector fieldsby extension to Hirzebruch surfaces....
    • 17. Seadawy, A.R., Younis, M., Iqbal, M.S., Baber, M.Z., Rizvi, S.T.R., Raheem, A.: Soliton behavior ofalgae growth dynamics leading to the...
    • 18. Rizvi, S.T.R., Seadawy, A.R., Farah, N., Ahmad, S.: Application of Hirota operators for controllingsoliton interactions for Bose-Einstien...
    • 19. Rizvi, S.T.R., Seadawy, A.R., Akram, U.: New dispersive optical soliton for an nonlinear Schrodingerequation with Kudryashov law of refractive...
    • 20. Seadawy, A.R., Akram, U., Rizvi, S.T.R.: Dispersive optical solitons along with integrability test andone soliton transformation for saturable...
    • 21. Bashir, A., Seadawy, A.R., Rizvi, S.T.R., Ali, I., Althubiti, S.: Dispersive dromions, conserved densitiesand fluxes with integrability...
    • 22. Rizvi, S.T.R., Seadawy, A.R., Akram, U., Younis, M., Althobaiti, A.: Solitary wave solutions alongwith Painleve analysis for the Ablowitz-Kaup-Newell-Segur...
    • 23. Bashir, A., Seadawy, A.R., Rizvi, S.T.R., Younis, M., Ali, I., Mousa, A.A.: Application of scalinginvariance approach, P-test and soliton...
    • 24. Li, B.Q., Ma, Y.L.: Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equa-tion arising from incompressible...
    • 25. Li, B.Q., Ma, Y.L.: The complex short pulse equation: multi-folded rogue waves and phase transition.Appl. Math. Lett.135, 108399 (2023)
    • 26. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons viathe conservation-law deep-learning...
    • 27. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractionalAblowitz-Ladik model. Optik228,...
    • 28. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-ordernonlinear Schrödinger Equation. Chin....
    • 29. Wen, X.K., Feng, R., Lin, J.H., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric...
    • 30. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger...
    • 31. Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose-Einstein con-densates. Phys. Rev. Lett.93, 194102...
    • 32. Zhang, H., Tang, D.Y., Zhao, L.M., Wu, X.: Dark pulse emission of a fiber laser. Phys. Rev. A80,045803 (2009)
    • 33. Theocharis, G., Weller, A., Ronzheimer, J.P., Gross, C., Oberthaler, M.K., Kevrekidis, P.G.,Frantzeskakis, D.J.: Multiple atomic dark...
    • 34. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple solitonsolutions, breather, lump and interaction...
    • 35. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev-Petviashvili equation andits integrability, multiple-solitons,...
    • 36. Li,B.Q.:Newbreatherandmultiple-wavesolitondynamicsforgeneralizedVakhnenko-Parkesequationwith variable coefficients. J. Comput. Nonlinear...
    • 37. Tang, D.Y., Zhao, L.M., Zhao, B., Liu, A.Q.: Mechanism of multisoliton formation and soliton energyquantization in passively mode-locked...
    • 38. Kaur, L., Wazwaz, A.M.: Painleve analysis and invariant solutions of generalized fifth-order nonlinearintegrable equation. Nonlinear Dyn.94,...
    • 39. Wazwaz, A.M.: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Com-mun. Nonlinear Sci. Numer. Simul.15,...
    • 40. Wazwaz, A.M.: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion. Appl.Math. Lett.52, 74–79 (2016)
    • 41. Xu, G.Q.: Painlevé classiffication of a generalized coupled Hirota system. Phys. Rev. E74, 027602(2006)
    • 42. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 43. Wazwaz, A.M.: The Hirota’s direct method for multiple-soliton solutions for three model equations ofshallow water waves. Appl. Math. Comput.201,...
    • 44. Li, B.Q., Ma, Y.L.: Interaction dynamics of hybrid solitons and breathers for extended generalizationof Vakhnenko equation. Nonlinear...
    • 45. Li, B.Q.: Loop-like kink breather and its transition phenomena for the Vakhnenko equation arisingfrom high-frequency wave propagation...
    • 46. Zhaqilao: Dynamics of localized wave solutions for the coupled Higgs field equation. Nonlinear Dyn.1011181–1198 (2020)
    • 47. Guo, J.T., He, J.S., Li, M.H., Mihalache, D.: Exact solutions with elastic interactions for the (2+1)-dimensional extended Kadomtsev-Petviashvili...
    • 48. Biondini, G.: Line soliton interactions of the Kadomtsev-Petviashvili equation. Phys. Rev. Lett.99,064103 (2007)
    • 49. Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow waterwaves. Stud. Appl. Math.123, 83–151...
    • 50. Chen, S.H., Zhou, Y., Baronio, F., Mihalache, D.: Special types of elastic resonant soliton solutions ofthe Kadomtsev-Petviashvili II...
    • 51. Ma, Y.L.: N-solitons, breathers and rogue waves for a generalized Boussinesq equation. Int. J. Comput.Math.97, 1648–1661 (2020)
    • 52. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev-Petviashviliequation in fluids. Phys. Lett. A413,...
    • 53. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl.Math. Lett.124, 107677 (2022)
    • 54. Chen, S.H., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of theKadomtsev-Petviashvili i equation. Rom....
    • 55. Jiang, Y., Rao, J.G., Mihalache, D., He, J.S., Cheng, Y.: Rogue breathers and rogue lumps on abackground of dark line solitons for the...
    • 56. Li, B.Q., Ma, Y.L.: N-order rogue waves and their novel colliding dynamics for a transient stimulatedRaman scattering system arising from...
    • 57. Hause, A., Hartwig, H., Bohm, M., Mitschke, F.: Binding mechanism of temporal soliton molecules.Phys.Rev.A78, 063817 (2008)
    • 58. Jia, M., Lin, J., Lou, S.Y.: Soliton and breather molecules in few-cycle-pulse optical model. NonlinearDyn.100, 3745–3757 (2020)
    • 59. Yan, Z.W., Lou, S.Y.: Soliton molecules in Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett.104, 106271 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno