Ir al contenido

Documat


Algebraic Integrability of Planar Polynomial Vector Fields by Extension to Hirzebruch Surfaces

  • Carlos Galindo [1] Árbol académico ; Francisco Monserrat [2] ; Elvira Pérez-Callejo [1]
    1. [1] Universitat Jaume I

      Universitat Jaume I

      Castellón, España

    2. [2] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study algebraic integrability of complex planar polynomial vector fields X = A(x, y)(∂/∂x) + B(x, y)(∂/∂ y) through extensions to Hirzebruch surfaces. Using these extensions, each vector field X determines two infinite families of planar vector fields that depend on a natural parameter which, when X has a rational first integral, satisfy strong properties about the dicriticity of the points at the line x = 0 and of the origin. As a consequence, we obtain new necessary conditions for algebraic integrability of planar vector fields and, if X has a rational first integral, we provide a region in R2 ≥0 that contains all the pairs (i, j) corresponding to monomials xi y j involved in the generic invariant curve of X.

  • Referencias bibliográficas
    • 1. Álvarez, M. J.; Ferragut, A.; Jarque, X.: A survey on the blow-up technique. Int. J. Bifur. Chaos Appl. Sci. Engrg., 21:3103–3118, (2011)
    • 2. Acosta-Humánez, P.B., Lázaro, T., Morales-Ruíz, J.J., Pantazi, C.: Differential Galois theory and nonintegrability of planar polynomial...
    • 3. Autonne, L.: Sur la théorie des équations différentielles du premier ordre et du premier degré. J. École Polytech., 61:35–122; ibid. 62...
    • 4. Bostan, A., Chéze, G., Cluzeau, T., Weil, J.A.: Efficient algorithms for computing rational first integrals and Darboux polynomials of...
    • 5. Brunella, M.: Birational geometry of foliations. Springer, IMPA Monographs (2015)
    • 6. Campillo, A., Carnicer, M.: Proximity inequalities and bounds for the degree of invariant curves by foliations of P2. Trans. Amer. Math....
    • 7. Campillo, A., Olivares, J.: Polarity with respect ot a foliation and Cayley-Bacharach Theorems. J. reine angew. Math 534, 95–118 (2001)
    • 8. Carnicer, M.: The Poincaré problem in the nondicritical case. Ann. Math. 140, 289–294 (1994)
    • 9. Casas-Alvero, E.: Singularities of plane curves, volume 276 of London Math. Soc. Lect. Notes Ser. Cambridge Univ. Press, (2000)
    • 10. Cavalier, V., Lehmann, D.: On the Poincaré inequality for one-dimensional foliations. Compos. Math. 142, 529–540 (2006)
    • 11. Cerveau, D., Lins-Neto, A.: Holomorphic foliations in CP(2) having an invariant algebraic curve. Ann. Inst. Fourier 41(4), 883–903 (1991)
    • 12. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Darboux integrability and the inverse integrating factor. J. Differ. Equ. 194, 116–139...
    • 13. Chavarriga, J., Llibre, J., Sotomayor, J.: Algebraic solutions for polynomial systems with emphasis in the quadratic case. Expo. Math....
    • 14. Chèze, G.: Darboux theory of integrability in the sparse case. J. Differ. Equ. 257, 601–609 (2014)
    • 15. Christopher, C.: Invariant algebraic curves and conditions for a center. Proc. Roy. Soc. Edinburgh 124A, 1209–1229 (1994)
    • 16. Christopher, C., Llibre, J.: Integrability via invariant algebraic curves for planar polynomial differential systems. Ann. Diff. Eq. 16,...
    • 17. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math.,...
    • 18. Dumortier, F.: Singularities of vector fields in the plane. J. Differ. Equ. 23, 53–106 (1977)
    • 19. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative theory of planar differential systems. UniversiText. Springer-Verlag, New York (2006)
    • 20. Esteves, E., Kleiman, S.: Bounds on leaves of one-dimensional foliations. Bull. Braz. Math. Soc. 34(1), 145–169 (2003)
    • 21. Ferragut, A., Galindo, C., Monserrat, F.: A class of polynomial planar vector fields with polynomial first integral. J. Math. Anal. Appl....
    • 22. Ferragut, A., Galindo, C., Monserrat, F.: On the computation of Darboux first integrals of a class of planar polynomial vector fields....
    • 23. Ferragut, A., Giacomini, H.: A new algorithm for finding rational first integrals of polynomial vector fields. Qual. Theory Dyn. Syst....
    • 24. Ferragut, A., Llibre, J.: On the remarkable values of the rational first integrals of polynomial vector fields. J. Differ. Equ. 241, 399–417...
    • 25. Galindo, C., Monserrat, F.: Algebraic integrability of foliations of the plane. J. Differ. Equ. 231(1), 611–632 (2006)
    • 26. Galindo, C., Monserrat, F.: On the characterization of algebraically integrable plane foliations. Trans. Amer. Math. Soc. 362, 4557–4568...
    • 27. Giné, J., Gray, M., and Llibre, J.: Polynomial and rational first integrals for planar homogeneous polynomial differential systems. Publ....
    • 28. Galindo, C., Monserrat, F.: The Poincaré problem, algebraic integrability and dicritical divisors. J. Differ. Equ. 256(1), 3614–3633 (2014)
    • 29. Galindo, C., Monserrat, F., Olivares, J.: Foliations with isolated singularities on Hirzebruch surfaces. Forum Math. 33(6), 1471–1483...
    • 30. Gómez-Mont, X., Ortiz, L.: Sistemas dinámicos holomorfos en superficies. Aportaciones Matemáticas Series, Sociedad Matemática Mexicana...
    • 31. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York (1977)
    • 32. Jouanolou, J.P.: Equations de Pfaff Algébriques Lect, vol. 708. Notes Math. Springer, New York (1966)
    • 33. Klein, F.: Lectures on the icosahedron and the solution of equations of the fifth degree. Dover, (1956)
    • 34. Lins-Neto, A.: Some examples for the Poincaré and Painlevé problems. Ann. Sc. Éc. Norm. Sup. 35, 231–266 (2002)
    • 35. Lins-Neto, A., and Scardua, B.: Complex algebraic foliations, volume 67 of Expositions in Math. De Gruyter, (2020)
    • 36. Llibre, J.: Open problems on the algebraic limit cycles of planar polynomial vector fields. Bul. Acad. Stiin¸ ¸ te Repub. Mold. Mat. 1,...
    • 37. Llibre, J.: Integrability and limit cycles via first integrals. Symmetry 13, 1736 (2021)
    • 38. Llibre, J., Rodríguez, G.: Configuration of limit cycles and planar polynomial vector fields. J. Differ. Equ. 198, 374–380 (2004)
    • 39. Llibre, J., Swirszcz, G.: Relationships between limit cycles and algebraic invariant curves for quadratic ´ systems. J. Differ. Equ. 229,...
    • 40. Llibre, J., Zhang, X.: On the Darboux integrability of polynomial differential systems. Qual. Theory Dyn. Syst. 11, 129–144 (2012)
    • 41. Painlevé, P.: “Sur les intégrales algébriques des équations différentielles du premier ordre” and “Mémoire sur les équations différentielles...
    • 42. Pereira, J.V.: On the Poincaré problem for foliations of the general type. Math. Ann. 323, 217–226 (2002)
    • 43. Pereira, J.V., Svaldi, R.: Effective algebraic integration in bounded genus. Algebraic Geom. 6, 454–485 (2019)
    • 44. Poincaré, H.: Mémoire sur les courbes définies par une équation différentiellle (i). J. Math. Pures Appl. 7, 375–442 (1881)
    • 45. Poincaré, H.: Mémoire sur les courbes définies par une équation différentiellle (ii). J. Math. Pures Appl. 8, 251–296 (1882)
    • 46. Poincaré, H.: Sur les courbes définies par une équation différentiellle (iii). J. Math. Pures Appl. 1, 167–244 (1885)
    • 47. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré (i). Rend. Circ. Mat. Palermo...
    • 48. Reid, M.: Chapters on algebraic surfaces. In Complex algebraic geometry (Park City, UT, 1993), volume 3 of IAS/Park City Math. Ser., pages...
    • 49. Scholomiuk, D.: Algebraic particular integrals, integrability and the problem of the centre. Trans. Amer. Math. Soc. 338, 799–841 (1993)
    • 50. Schwarz, H.A.: Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes...
    • 51. Seidenberg, A.: Reduction of singularities of the differentiable equation Ady = Bdx. Amer. J. Math. 90, 248–269 (1968)
    • 52. Soares, M.: The Poincaré problem for hypersurfaces invariant for one-dimensional foliations. Invent. Math. 128, 495–500 (1992)
    • 53. Soares, M.: Projective varieties invariant for one-dimensional foliations. Ann. Math. 152, 369–382 (2000)
    • 54. Walcher, S.: On the Poincaré problem. J. Differ. Equ. 166, 51–78 (2000)
    • 55. Zamora, A.G.: Foliations in algebraic surfaces having a rational first integral. Publ. Mat. 41, 357–373 (1997)
    • 56. Zamora, A.G.: Sheaves associated to holomorphic first integrals. Ann. Inst. Fourier 500, 909–919 (2000)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno