Ir al contenido

Documat


Neural Models to Predict Irrigation Needs of a Potato Plantation

  • Mercedes Yartu [1] ; Carlos Cambra [1] Árbol académico ; Milagros Navarro [1] ; Carlos Rad [1] ; Ángel Arroyo [1] Árbol académico ; Álvaro Herrero [1] Árbol académico
    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío Árbol académico, Carlos Cambra Baseca Árbol académico, Daniel Urda Muñoz Árbol académico, Javier Sedano Franco Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-57802-2, págs. 600-613
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Reducing water consumption is an important target required for a sustainable farming. In order to do that, the actual water needs of different crops must be known and irrigation scheduling must be adjusted to satisfy them. This is a complex task as the phenology of plants and its water demand vary with soil properties and weather conditions. To address such problem, present paper proposes the application of time-series neural networks in order to predict the soilwater content in a potato field crop, in which a soil humidity probe was installed. More precisely, Non-linear Input-Output, Non-linear Autoregressive and Non-linear Autoregressive with Exogenous Input models are applied. They are benchmarked, together with different interpolationmethods in order to find the best combination for accurately predicting water needs. Promising results have been obtained, supporting the proposed models and their viability when predicting the real humidity level in the soil.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno