Ir al contenido

Documat


Hourly Air Quality Index (AQI) Forecasting Using Machine Learning Methods

    1. [1] Universidad de Cádiz

      Universidad de Cádiz

      Cádiz, España

    2. [2] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío Árbol académico, Carlos Cambra Baseca Árbol académico, Daniel Urda Muñoz Árbol académico, Javier Sedano Franco Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-57802-2, págs. 123-132
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Air Quality Index (AQI) is an index to inform the daily air quality. AQI is a dimensionless quantity to show the state of air pollution simplifying the information of concentrations in μg/m3. Air quality indexes have been established for each of the five pollutants located in an interesting area to study in as Algeciras (Spain). Hourly data of air pollutants, available during 2010–2015, were analysed for the development of the proposed AQI. This work proposes a two-step forecasting approach to obtain future values, eight hours ahead, of AQI using Machine Learning methods. ANN, SVR and LSTM are capable of modelling nonlinear time series and can be trained to accurately generalize when a new database is presented.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno