Ir al contenido

Documat


Nonequilibrium in Thermodynamic Formalism: The Second Law, Gases and Information Geometry

  • Lopes, A. O. [1] ; Ruggiero , R. [1]
    1. [1] Inst. Mat. UFRGS
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In nonequilibrium thermodynamics and information theory, the relative entropy (or, KL divergence) plays a very important role. Consider a Hölder Jacobian J and the Ruelle (transfer) operator LlogJ. Two equilibrium probabilities μ1 and μ2, can interact via a discrete-time Thermodynamic Operation given by the action of the dual of the Ruelle operator L∗logJ. We argue that the law μ→L∗logJ(μ), producing nonequilibrium, can be seen as a Thermodynamic Operation after showing that it’s a manifestation of the Second Law of Thermodynamics. We also show that the change of relative entropy satisfies DKL(μ1,μ2)−DKL(L∗logJ(μ1),L∗logJ(μ2))=0.

      Furthermore, we describe sufficient conditions on J,μ1 for getting h(L∗logJ(μ1))≥h(μ1), where h is entropy. Recalling a natural Riemannian metric in the Banach manifold of Hölder equilibrium probabilities we exhibit the second-order Taylor formula for an infinitesimal tangent change of KL divergence; a crucial estimate in Information Geometry. We introduce concepts like heat, work, volume, pressure, and internal energy, which play here the role of the analogous ones in Thermodynamics of gases. We briefly describe the MaxEnt method.

  • Referencias bibliográficas
    • 1. Aguiar, D., Cioletti, L., Ruviaro, R.: A variational principle for the specific information for symbolic systems with uncountable alphabets....
    • 2. Altaner, B., Vollmer, J.: A microscopic perspective on stochastic thermodynamics, arXiv (2012)
    • 3. Altaner, B.: Foundations of Stochastic Thermodynamics, PhD thesis (2014)
    • 4. Altaner, B.: Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics. J. Phys. A Math. Theorem 50, 454001...
    • 5. Amari, S.: Information Geometry and Its Applications. Springer, New York (2016)
    • 6. Arovas, D.: Lecture Notes on Thermodynamics and Statistical Mechanics, preprint University of California, San Diego (2020)
    • 7. Attard, P.: Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications. Oxford University Press, Oxford (2012)
    • 8. Balian, R., Valentin, P.: Hamiltonian structure of thermodynamics with gauge. Eur. J. Phys. B 21, 269–282 (2001)
    • 9. Baraviera, A., Leplaideur, R., Lopes, A.O.: Ergodic Optimization, zero temperature and the Max-Plus algebra, 23o Coloquio Brasileiro de...
    • 10. Baraviera, A., Lopes, A.O., Thieullen, P.: A large deviation principle for Gibbs states of Hölder potentials: the zero temperature case....
    • 11. Bennett, C.H., Gacs, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. Inf. Theory 44(4), 1407–1423 (1998)
    • 12. Benoist, T., Jaksic, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements I. Gen. Theory. Commun. Math....
    • 13. Ben-Tal, A., Teboulle, M., Charnes, A.: The role of duality in optimization problems involving entropy functionals with applications to...
    • 14. Bomfim, T., Castro, A., Varandas, P.: Differentiability of thermodynamical quantities in non-uniformly expanding dynamics. Adv. Math....
    • 15. Callen, H.: An Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)
    • 16. Caticha, A.: Entropic Physics: Lectures on Probability, Entropy and Statistical Physics, version (2021)
    • 17. Chattopadhyay, P., Paul, G.: Revisiting thermodynamics in computation and information theory, arXiv (2021)
    • 18. Chazottes, J.-R., Olivier, E.: Relative entropy, dimensions and large deviations for g-measures. J. Phys. A 33(4), 675–689 (2000)
    • 19. Chu, D., Spinney, R.E.: A thermodynamically consistent model of finite-state machines. Interface Focus 8(6), 20180037 (2018). (The Royal...
    • 20. Cioletti, L., Lopes, A.O.: Correlation inequalities and monotonicity properties of the Ruelle operator. Stoch. Dyn. 19(6), 1950048 (2019)
    • 21. Craizer, M., Lopes, A.O.: The capacity costfunction of a hard constrained channel. Int. J. Appl. Math. 2(10), 1165–1180 (2000)
    • 22. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publications, New York (1962)
    • 23. Denker, M., Woyczynski, W.: Introductory Statistics and Random Phenomena. Birkhauser, Boston (1998)
    • 24. Esposito, M., Van den Broeck, C.: Second law and Landauer principle far from equilibrium. EPL (Europhys. Lett.) 95(4), 4004–p1-6 (2011)
    • 25. Frieden, B.R.: Physics from Fisher information. University Press, Cambridge (1999)
    • 26. Galanger, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)
    • 27. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter, Berlin (2011)
    • 28. Giulietti, P., Lopes, A.O., Pit, V.: Duality between Eigenfunctions and Eigendistributions of Ruelle and Koopman operators via an integral...
    • 29. Gray, R.: Entropy and Information Theory, 2nd edn. Springer, New York (2011)
    • 30. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)
    • 31. Ji, C.: Estimating functionals of one-dimensional Gibbs states. Probab. Theorem Rel. Fields 82, 155–175 (1989)
    • 32. Kloeckner, B., Lopes, A.O., Stadlbauert, M.: Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics...
    • 33. Kloeckner, B., Giulietti, P., Lopes, A.O., Marcon, D.: The calculus of thermodynamical formalism. J. Eur. Math. Soc. 20(10), 2357–2412...
    • 34. Lalley, S.: Distribution of periodic orbits of symbolic and axiom a flows. Adv. Appl. Math 8, 154–193 (1987)
    • 35. Liggett, T.: Interacting Particle Systems. Springer, New York (1985)
    • 36. Lindenstrauss, E., Meiri, D., Peres, Y.: Entropy of Convolutions on the Circle. Ann. Math. 149(3), 871–904 (1999)
    • 37. Lopes, A.O., Mengue, J.K.: On information gain, Kullback–Leibler divergence, entropy production and the involution kernel. Disc. Cont....
    • 38. Lopes, A.O., Ruggiero, R.: The sectional curvature of the infinite dimensional manifold of Hölder equilibrium probabilities, arXiv (2020)
    • 39. Lopes, A.O.: Thermodynamic Formalism, Maximizing Probabilities and Large Deviations, preprint UFRGS. http://mat.ufrgs.br/alopes/pub3/notesformteherm.pdf
    • 40. Lopes, A.O.: A formula for the Entropy of the Convolution of Gibbs probabilities on the circle. Nonlinearity 31, 3441–3459 (2018)
    • 41. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for onedimensional lattice systems with a general...
    • 42. Maes, C., Netocny, K., Shergelashvili, B.: A selection of nonequilibrium issues. Methods Contemp. Math. Stat. Phys. 1970, 247–306 (2009)
    • 43. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110(1/2), 269–310 (2003)
    • 44. Maes, C., Verbitskiy, E.: Large deviations and a fluctuation symmetry for chaotic homeomorphisms. Commun. Math. Phys. 233, 137–151 (2003)
    • 45. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990)
    • 46. Penrose, O.: Foundations of Statistical Mechanics. Dover, New York (2014)
    • 47. Posner, E.: Random coding strategies for minimum entropy. IEEE Trans. Inf. Theory 21(4), 388–391 (1975)
    • 48. Rached, Z., Aklajaji, F., Campbell, L.L.: The Kullback–Leibler divergence rate between Markov sources. IEEE Trans. Inf. Theory 50(5),...
    • 49. Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20(4), 1608–1613 (1979)
    • 50. Sagawa, T.: Entropy, divergence and majorization in classical and quantum theory, arXiv (2020)
    • 51. Sagawa, T.: Thermodynamics of Information Processing in Small Systems. Springer, New York (2013)
    • 52. Schlogl, F.: Probability and Heat. Springer Fachmedien Wiesbaden GmbH, New York (1989)
    • 53. Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans....
    • 54. Thompson, L.F., Qian, H.: Nonlinear stochastic dynamics of complex systems, II: Potential of entropic force in Markov systems with nonequilibrium...
    • 55. Trivedi, K.S., Vaidyanathan, K., Selvamuth, D.: Markov Chain Models and applications, chapter 13. In: Obaidat, M.S., Zarai, F., Nicopolitidis,...
    • 56. van der Schaft, A.: Liouville geometry of classical thermodynamics, arXiv (2021)
    • 57. Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Cambridge Press, Cambridge (2016)
    • 58. Walters, P.: An introduction to Ergodic theory. Springer, New York (1982)
    • 59. Wang, H.S., Moayeri, N.: Finite-state Markov channel–a useful model for radio communication channels. IEEE Trans. Vehic. Technol. 44(1),...
    • 60. Wang, Y., Qian, H.: Mathematical Representation of Clausius’ and Kelvin’s Statements of the Second Law and Irreversibility. J. Stat. Phys....
    • 61. Wolpert, D.H.: Stochastic thermodynamics of computation. J. Phys. A Math. Theor. 52(19), 193001 (2019)
    • 62. Ziegler, H.: An Introduction to Thermomechanics. North Holland (1983)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno